SOME CHARACTERIZATIONS OF A B-PROPERTY

By

Yoshikazu YASUI

A topological space X has a *B*-property (P. Zenor[14]) if, for any monotone increasing open covering $\{U_{\alpha} | \alpha < \tau\}$ of X, there exists a monotone increasing open covering $\{V_{\alpha} | \alpha < \tau\}$ of X such that cl $(V_{\alpha}) \subset U_{\alpha}$ for each $\alpha < \tau$, where cl (V_{α}) denotes the closure of V_{α} .

B-property is weaker than the paracompactness and stronger than the countable paracompactness (M. E. Rudin [8] and [9]). So far as I know, P. Zenor was the first mathematician to introduce it as the property which characterizes the Lindelöfness of the separable regular T_1 spaces. Before now the various properties of it and its neighborhood were seen by F. Ishikawa [4], K. Chiba [2], M. E. Rudin [8], [9] and others ([6], [10], [11] and [13] etc.).

The purpose of this paper is to have some characterizations of the B-property and their applications. In this paper, the spaces are assumed to be regular.

THEOREM 1 Let X be a topological space. Then the following properties are equivalent:

- (1) X has a **B**-property.
- (2) For any monotone increasing open covering $\{U_{\alpha} | \alpha < \tau\}$ of X, there exists an open covering $\{V_{\alpha} | \alpha < \tau\}$ of X such that
 - (2-1) $V_{\alpha} \subset U_{\alpha}$ for each $\alpha < \tau$.
 - (2-2) For each $x \in X$, there exist an open nbd (=neighborhood) 0 of x and $\alpha_0 < \tau$ such that $0 \cap (\bigcup \{V_{\alpha} | \alpha \ge \alpha_0\}) = \phi$.
- (3) For any monotone increasing open covering {U_α | α < τ} of X, there exists an open covering {V_α | α < τ} of X such that
 - (3-1) cl $(V_{\alpha}) \subset U_{\alpha}$ for each $\alpha < \tau$.
 - (3-2) For each $x \in X$, there exist an open nbd 0 of x and $\alpha_0 < \tau$ such that $0 \cap (\bigcup \{V_{\alpha} | \alpha \ge \alpha_0\}) = \phi$.

PROOF $(1) \rightarrow (3)$: Let $\{U_{\alpha} | \alpha < \tau\}$ be any monotone increasing open covering of X. Then we have two monotone increasing open coverings $\{T_{\alpha} | \alpha < \tau\}$ and $\{S_{\alpha} | \alpha < \tau\}$ of X such that

 $\operatorname{cl}(S_{\alpha}) \subset T_{\alpha} \subset \operatorname{cl}(T_{\alpha}) \subset U_{\alpha}$ for each $\alpha < \tau$.

Received July 31, 1985.