HOMOGENEOUS TUBES OVER ONE-POINT EXTENSIONS

By

Noritaka KOYAMA and Jun-ichi MIYACHI

Introduction

Let A be a finite dimensional algebra over a field k, and M a finite dimensional left Amodule. We denote by R=R(A, M) the one-point extension of A by M, namely,

$$R = \left[\begin{array}{cc} A & M \\ 0 & k \end{array} \right]_{.}$$

V. Dlab and C. M. Ringel looked into the indecomposable representations of tame hereditary algebras [3]. As a result, they found that stable tubes, in particular homogeneous tubes, play an important role in their Auslander-Reiten quivers. Here a connected component Γ of the Auslander-Reiten quiver is called a stable tube if Γ is of the form $\mathbb{Z}A_{\infty}/n$ for some $n \in \mathbb{N}$, and called a homogeneous tube if Γ is a stable tube with n=1[6]. Recently, in case of the base field being algebraically closed, C. M. Ringel generalized their results in terms of the one-point extension, and gave conditions on A and M that make R(A, M) have stable separating tubular families [6].

We are interested in stable tubes, and in this paper we characterize broader parts of DTr-invariant R-modules in terms of the one-point extension, and construct the homogeneous tubes which contain them.

Throughout this paper, we deal only with finite dimensional algebras over a field k, and finite dimensional (usually left) modules. We denote by P(X), the projective cover of X, and by E(Y), the injective hull of Y. The k-dual Hom_k (-, k) is denoted by D, and the A-dual Hom_k (-, A) (resp. the R-dual Hom_R (-, R)) is denoted by $-^*$ (resp. $-^{\#}$). Further we freely use the results of [1], [2] and [5], and denote DTr by τ .

1. The Auslander-Reiten Translation over One-point Extensions

In this section, we calculate the Auslander-Reiten translation of R(A, M)-modules. Given R = R(A, M), it is well known that the category of left *R*-modules is equivalent to the category $\mathfrak{M}(_AM_k)$. Recall that the category $\mathfrak{M}(_AM_k)$ of representations of the bimodule $_AM_k$ has as objects the triples $(_kU, _AX, \phi)$ with an *A*-homomorphism $\phi: _AM \otimes _k U \rightarrow _AX$, and a morphism from $(_kU, _AX, \phi)$ to $(_kU', _AX', \phi')$ is given by a pair (α, β) of a k-linear map α :

Received June 18, 1985.