NOTES ON $P_{\kappa\lambda}$ AND $[\lambda]^{\kappa}$

By

Yoshihiro Abe

This paper consists of notes on some combinatorial properties. § 1 deals with λ -ineffability and the partition property of $P_k\lambda$ with λ ineffable. In § 2 we combine the flipping property and a filter investigated by Di Prisco and Marek to characterize huge cardinals.

We work in ZFC and the notations are standard. $P_k \lambda = \{x \subset \lambda : |x| < \kappa\} [\lambda]^{\kappa} = \{x \subset \lambda : |x| = \kappa\}, D_{\kappa} \lambda = \{\{x, y\} : x, y \in P_{\kappa} \lambda \text{ and } x \subseteq y\}.$

§ 1 $P_{\kappa}\lambda$ when λ is ineffable.

 κ is called λ -ineffable if for any function $f: P_{\kappa}\lambda \longrightarrow P_{\kappa}\lambda$ such that $f(x) \subset x$ for all $x \in P_{\kappa}\lambda$, there is a subset A of λ such that the set $\{x \in P_{\kappa}\lambda : A \cap x = f(x)\}$ is stationary. We abbreviate the following statement to $Part^*(\kappa, \lambda)$;

"For any function $F: D_{\epsilon}\lambda \longrightarrow 2$, there is a stationary homogeneous set H i.e. $|F''([H]^2 \cap D_{\epsilon}\lambda)| = 1$."

If Part*(κ , λ), then κ is λ -ineffable. We shall show the converse is true when λ is ineffable.

LEMMA 1. $X \subset P_{\kappa}\lambda$ is closed unbounded iff $\{\alpha < \lambda : X \cap P_{\kappa}\alpha \text{ is closed unbounded} \}$ in $P_{\kappa}\alpha$ contains a closed unbounded subset of λ . Hence S is stationary in $P_{\kappa}\lambda$ if $\{\alpha < \lambda : S \cap P_{\kappa}\alpha \text{ is stationary in } P_{\kappa}\alpha\}$ is a stationary subset of λ .

THEOREM 2. Suppose that λ is ineffable. If Part*(κ , α) for all $\alpha < \lambda$, then Part*(κ , λ).

PROOF. Let $F: D_{\kappa}\lambda \longrightarrow 2$ and $F_{\alpha} = F \upharpoonright D_{\kappa}\alpha$ for every $\alpha < \lambda$. By our assumptions, there is a stationary subset A_{α} of $P_{\kappa}\alpha$ such that

$$F''([A_{\alpha}]^2 \cap D_{\kappa}\alpha) = \{k_{\alpha}\}, k_{\alpha} \in \{0, 1\}.$$

Since λ is ineffable, we can find an $A \subset P_{\kappa} \lambda$ so that

$$S = \{\alpha < \lambda : A_{\epsilon} = A \cap P_{\epsilon}\alpha\}$$
 is stationary in λ .

Received September 30, 1985.