A REMARK ON HIGMAN'S RESULT ABOUT SEPARABLE ALGEBRAS

In memory of Professor Akira HATTORI

By

Koichiro OHTAKE and Hiroshi FUKUSHIMA

1. Introduction.

Let k be a field with arbitrarry characteristics and A a finite dimensional kalgebra. Then A is said to be a separable algebra if for any extension field E of k, $A \otimes_k E$ is a semisimple E-algebra. Let a_1, \dots, a_n be a k-basis of A and T_{A_ik} = T a trace form of A over k, that is, for $x \in A$, if $a_i x = \sum_j \alpha_{ij} a_j$ ($\alpha_{ij} \in k$) then T(x)= $\Sigma \alpha_{ii}$.

It is well known that if A is a finite extension field of k, then A is a separable extension of k iff A is a separable algebra and iff T is nondegenerate (the bilinear form $A \times A \rightarrow k$ is defined by $(x, y) \longrightarrow T(xy)$ as usual). But in case where an algebra A is not necessarily a field, the situation is more complicated.

Before stating Higman's result, let us fix the algebra A with several assumptions. Throughout this paper unless otherwise specified let k be a field with arbitrary characteristic and A a finite dimensional Frobenius k-algebra with nondegenerate associative bilinear from $\phi: A \times A \rightarrow k$ with fixed dual bases $\{a_i\}, \{b_i\}$ (i.e. $\phi(a_i, b_j) = \delta_{ij}$) $(i, j = 1, \dots, n)$.

Now Higman's result is as follows.

THEOREM 1 (Higman). The following are equivalent.

- (i) A is a separable k-algebra.
- (ii) There exists a nondegenerate associative bilinear from $\psi: A \times A \rightarrow k$ with dual bases $\{a'_i\}, \{b'_i\}$ such that $\Sigma b'_i x a'_i = 1$ for some $x \in A$.

It should be noted that under the same situation of the theorem $\Sigma b'_i x a'_i$ is always in the center of A for any $x \in A$ but $\Sigma a'_i x b'_i$ is not (we shall give a simple example later). It seems natural to ask that what $\Sigma a'_i x b'_i = 1$ does imply. To this question we obtained the following result.

THEOREM 2. Let $\{a_i\}$, $\{b_i\}$ be dual bases with respect to ϕ . Then the following are equivalent.

Received by May 13, 1985.