REMARKS ON HYPERBOLIC POLYNOMIALS

By

Seiichiro WAKABAYASHI

1. Introduction.

In the study of hyperbolic partial differential operators, it is important to investigate properties of the characteristic roots. Bronshtein [2] proved the Lipschitz continuity of the characteristic roots of hyperbolic operators with variable coefficients, and he studied the hyperbolic Cauchy problem in Gevrey classes (see [3]). Ohya and Tarama [7] extended the results in [2] and, also, studied the Cauchy problem.

In this paper we shall give an alternative proof of Bronshtein's results, which seems to be simpler. Also, we shall prove the inner semi-continuity of the cones defined for the localization polynomials of hyperbolic operators (see Theorem 3 below). In studying singularities of solutions the inner semi-continuity of the cones plays a key role (see [8], [9], [10]). We note that our method can be applicable to the mixed problem.

Let $p(t, x, y) = t^m + \sum_{j=1}^m a_j(x, y)t^{m-j}$ be a polynomial in t, where the $a_j(x, y)$ are defined for $x = (x_1, \dots, x_n) \in X$ and $y \in Y$, X is an open convex subset of \mathbb{R}^n and Y is a compact Hausdorff topological space. We assume that

(A-1) $p(t, x, y) \neq 0$ if $\operatorname{Im} t \neq 0$ and $(x, y) \in X \times Y$,

(A-2) $\partial_x^{\alpha} a_j(x, y)$ ($|\alpha| \leq k, 1 \leq j \leq m$) are continuous and there are C>0 and δ with $0 < \delta \leq 1$ such that

$$|\partial_x^{\alpha}a_j(x,y) - \partial_x^{\alpha}a_j(x',y)| \leq C|x - x'|^{\delta}$$

if $|\alpha| = k$, $x, x' \in X$ and $y \in Y$, where k is a nonnegative integer and $\partial_x^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$.

THEOREM 1. Assume that (A-1) and (A-2) are satisfied. Then, for any open subset U of X with $U \subseteq X$ there is C = C(U) > 0 such that

$$|\lambda_j(x, y) - \lambda_j(x', y)| \leq C|x - x'|^r$$
 for $1 \leq j \leq m, x, x' \in U$ and $y \in Y$,

where $p(t, x, y) = \prod_{j=1}^{m} (t - \lambda_j(x, y)), \lambda_1(x, y) \leq \lambda_2(x, y) \leq \cdots \leq \lambda_m(x, y), and r = \min(1, (k+\delta))$

Received May 7, 1985.