ANTILOCALITY AND ONE-SIDED ANTILOCALITY FOR STABLE GENERATORS ON THE LINE

By

Yasushi Ishikawa

1. Introduction.

Let X be an open domain in \mathbb{R}^n . Consider a linear operator $A: C_0^{\infty}(X) \to C^{\infty}(X)$, where $C^{\infty}(X)$ is the class of infinitely differentiable functions on X and $C_0^{\infty}(X)$ is the set of functions of $C^{\infty}(X)$ which have compact support in X. We say A is antilocal if $\operatorname{supp} f \cup \operatorname{supp} Af = X$ for every $f \in C_0^{\infty}(X)$ such that $f \equiv 0$. Equivalently, if f = Af = 0 in an open subset of X, then $f \equiv 0$ in X.

Antilocality was firstly proved by Reeh-Schlieder [7] for the operator $(m^2I-\Delta)^{1/2}$, where Δ denotes the Laplacian. Subsequently it was extended by Goodman-Segal [1], Masuda [6] and Murata [3] for $(m^2I-\Delta)^{\lambda}$, $\lambda \in \mathbb{C} \setminus \mathbb{Z}$. Recently it was extended to the complex powers (z-powers) of elliptic differential operators with analytic coefficients of order m such that $mz \notin 2\mathbb{Z}$ by Liess [2].

In this paper we study the following operators:

$$(*) \qquad \qquad \mathfrak{a}_{p,q}(D)f(x) \equiv \int_{-\infty}^{+\infty} (f(x+y) - f(x))[p\mathbf{1}_{R_{-}}(y) + q\mathbf{1}_{R_{+}}(y)] \frac{dy}{|y|^{1+\alpha}},$$

where $p \ge 0$, $q \ge 0$, p+q=1, $0 < \alpha < 1$ and $1_{R_{\pm}}(y)=1$ or 0 according as $y \in \mathbf{R}_{\pm}$ or not. Here $\mathbf{R}_{\pm}=(0, +\infty)$ and $\mathbf{R}_{-}=(-\infty, 0)$. These operators appear as generators of stable processes on the line with index α in probability theory. So we call them stable generators. In case p=q it is known that the stable generator with index α is $\alpha/2$ -power of the constant multiple of $-\Delta$, and therefore it is antilocal by the result mentioned above. However, in case $p \neq q$, the stable generator is not a fractional power of $-\Delta$. Especially, in case p=0, q=1, this is completely asymmetric. Indeed, the trajectory of stable process with index α moves only to the right only in case q=1. Therefore it would not be expected that the antilocality holds for this case, and so we introduce the one-sided antilocality as follows:

DEFINITION. An operator $T: C_0^{\infty}(\mathbf{R}^1) \to C^{\infty}(\mathbf{R}^1)$ is antilocal to the right (to the left), if $f \equiv 0$ in $U + \mathbf{R}_+$ (resp. $f \equiv 0$ in $U + \mathbf{R}_-$) for every $f \in C_0^{\infty}(\mathbf{R}^1)$ such that f = Tf = 0 in U, where U is an open subset in \mathbf{R}^1 and $U + \mathbf{R}_{\pm} \equiv \{x + y \in \mathbf{R}^1; x \in U, y \in \mathbf{R}_{\pm}\}$. T is

Received February 26, 1985.