A CHARACTERIZATION OF ABSOLUTE NEIGHBORHOOD RETRACTS IN GENERAL SPACES

Dedicated to Professor Keiô Nagami on his 60th birthday

By

Takuo Miwa

Some characterizations of absolute neighborhood retracts were established in separable metric spaces by Hanner [4]. Hanner's characterizations were easily extended to the metric case. For this, see Hu [5] Chapter IV. In this paper, we shall extend one of Hanner's characterizations to more general spaces, especially, stratifiable spaces, spaces with a σ -almost locally finite base and paracomplexes. For the ANR theory of these spaces, we refer Cauty [2], Miwa [8] and Hyman [6], respectively.

Throughout this paper, all spaces are assumed to be paracompact normal spaces and all maps to be continuous. I and S denote the closed unit interval [0, 1] and the class of all stratifiable spaces, respectively. ANR(Q) (resp. ANE(Q)) is the abbreviation for absolute neighborhood retract (resp. extensor) for the class Q. For these definitions, see [5].

In this paper, all theorems are proved in the class S. But these theorems can be proved in some other classes. For instance, see Remark 2.3.

1. Preliminaries.

DEFINITION 1.1 ([3]). A space Y is equiconnected if there is a map $F: Y \times Y \times I \rightarrow Y$ such that F(x, y, 0) = x, F(x, y, 1) = y and F(x, x, t) = x for all $(x, y) \in Y \times Y$ and $t \in I$. The space Y is said to be *locally equiconnected* if F is defined only on $U \times I$, for some neighborhood U of the diagonal of $Y \times Y$.

DEFINITION 1.2 ([4]). Let $f, g: Y \to X$ be two maps. If X is covered by $\mathcal{U} = \{U_{\alpha}\}, f \text{ and } g \text{ are called } \mathcal{U}\text{-near if for each } y \in Y \text{ there is a } U_{\alpha} \in \mathcal{U} \text{ such that } f(y) \in U_{\alpha}, g(y) \in U_{\alpha}.$

DEFINITION 1.3 ([4]). Let $h_t: Y \to X$ be a homotopy. If X is covered by $\mathcal{U} = \{U_{\alpha}\}, h_t$ is called a \mathcal{U} -homotopy if for each $y \in Y$ there is a $U_{\alpha} \in \mathcal{U}$ such that $h_t(y) \in U_{\alpha}$ for all $t \in I$.

Received March 8, 1984. Received May 8, 1984.