TWO THEOREMS ON THE EXISTENCE OF INDISCERNIBLE SEQUENCES

By

Akito TSUBOI

§0. Introduction.

In this paper we shall state two theorems (Theorem A and Theorem B below) concerning the existence of indiscernible sequences which realize a given type. When we know the existence of a set $A = (a_i)_{i < \omega}$ which realizes a given infinite type p, it will be convenient to assume that A is an indiscernible sequence. Of course this is not always the case. But the type p satisfies a certain condition, we can assume A to be an indiscernible sequence. The reader will find some such conditions in this paper. Our results generalize the following fact:

FACT. The following two conditions on a type $p(x_0, \dots, x_i, \dots)_{i < \omega}$ are equivalent:

i) There is an indiscernible sequence $(a_i)_{i < \omega}$ which realizes $p(x_i)_{i < \omega}$.

ii) There is a sequence $(a_i)_{i < \omega}$ such that $(a_{f(i)})_{i < \omega}$ realizes $p(x_i)_{i < \omega}$, whenever f is an increasing function on ω .

Our results in this paper will be used to investigate the number $\kappa_{inp}(T)$ of independent partials of T, in the sequel [3] to this paper. In §1 below, we shall state Theorem A and Theorem B, whose proofs will be given in §2.

§1. Theorems.

We use the usual standard notions in Shelah [2]. But some of them will be explained below. Let T be a fixed complete theory formulated in a first order language L(T), and \mathfrak{C} a model of T with sufficiently large saturation (cf. p. 7 in [2]). We use α , β , γ , \cdots for ordinals and m, n, i, j, k, \cdots for natural numbers. \bar{a} , \bar{b} , and \bar{a}^i_{α} are used to denote finite tuples of elements in \mathfrak{C} . \bar{x} , \bar{y} , and \bar{x}^i_{α} are used to denote finite sequence of variables. We use capitals A_{α} , B_{α} , \cdots (X_{α} , Y_{α} , \cdots) to denote (distinct) ω -sequences of (distinct) k-tuples of (distinct) elements in \mathfrak{C} (variables). Therefore, A_{α} has the form $(\bar{a}^i_{\alpha})_{i < \omega}$, where \bar{a}^i_{α} is a tuple of elements of \mathfrak{C} , whose length is k. For such an A_{α} ,

Received March 1, 1984.