TSUKUBA J. MATH. No. 8 No. 2 (1984), 227-253

HIGHER *R*-DERIVATIONS OF SPECIAL SUBRINGS OF MATRIX RINGS

By

Andrzej NOWICKI

1. Introduction.

Let R be a ring with identity and P be a special subring of $M_n(R)$ ([7]), i.e. P is of the form

$$P = \{A \in M_n(R); A_{ij} = 0 \text{ for } (i, j) \notin \rho\},\$$

where ρ is a (reflexive and transitive) relation on the set $\{1, 2, \dots, n\}$, and $M_n(R)$ is the ring of $n \times n$ matrices over R.

In this paper we study the group $D_s^R(P)$ of all *R*-derivations of order s ([5], [8]-[11]) of *P*. We prove (Theorem 5.3) that every element $d \in D_s^R(P)$ has a unique representation of the form $d=d^{(1)}*d^{(2)}$, where $d^{(1)}$ is an inner derivation in $D_s^R(P)$ ([8]), and $d^{(2)}$ is an element of a certain abelian subgroup of $D_s^R(P)$ whose simple description is given in Section 3 (by * we denote the multiplication in the group $D_s^R(P)$). This theorem plays a basic role in our further considerations.

Moreover, in Section 4, we give some necessary and sufficient conditions for a ring P to have all R-derivations (all derivations) of order s of P to be inner.

In Sections 7,8,9 we investigate s'-integrable *R*-derivations of order s (where s < s') i.e. such *R*-derivations of order s which can be extended to *R*-derivations of order s' (comp. [4]). We show in Example 7.4 that, in general, there are non-integrable *R*-derivations of *P*. We prove (Theorem 9.6) that if the homology group $H_1(\Gamma)$ of the simplicial complex Γ of the relation ρ (Section 2) is free abelian, then every usual *R*-derivation is 3-integrable, and if, in addition, $H_2(\Gamma) = 0$ then every *R*-derivation of order s is s'-integrable for any s < s' (Theorem 8.6).

At the end of this paper, we formulate three open problems.

2. Preliminaries.

Throughout this paper R is a ring with identity, n is a fixed natural number and ρ is a reflexive and transitive relation on the set $I_n = \{1, 2, \dots, n\}$.

Received October 25, 1983.