INNER DERIVATIONS OF HIGHER ORDERS

By

Andrzej Nowicki

Summary. We define inner derivations of higher order of a ring R and we prove that they correspond to the inner automorphisms of a suitable ring. Moreover, we prove that any higher derivation of R is inner if and only if any usual derivation of R is inner.

I.

Let R be a ring with identity and let S be a segment of $N=\{0, 1, 2, \cdots\}$, that is, S=N or $S=\{0, 1, \cdots, s\}$ for some $s\geq 0$.

A family $d=(d_n)_{n\in S}$ of mappings $d_n: R\to R$ is called a derivation of order s of R (where $s=\sup S\leqq \infty$) if the following properties are satisfied:

- (1) $d_n(a+b) = d_n(a) + d_n(b)$,
- (2) $d_n(ab) = \sum_{i+j=n} d_i(a) d_j(b),$
- (3) $d_0 = id_R$.

The set of derivations of order s of R, denoted by $D_s(R)$, is the group under the multiplication * defined by the formula

$$(d*d')_n = \sum_{i+j=n} d_i \circ d'_j$$
,

where $d, d' \in D_s(R)$ and $n \in S$ ([1], [5], [7]).

It is easy to prove the following two lemmas.

LEMMA 1.1. Let $a \in R$, $d_0 = id_R$, and

$$d_n(x) = a^n x - a^{n-1} x a = a^{n-1} (ax - xa)$$

for $n \ge 1$, $x \in R$. Then $d = (d_n)_{n \in S}$ belongs to $D_s(R)$.

LEMMA 1.2. Let $d \in D_s(R)$, $k \in S \setminus \{0\}$ and let $\delta = (\delta_n)_{n \in S}$ be the family of mappings from R to R defined by

$$\delta_n = \left\{ egin{array}{ll} 0 \;, & if \; k \not\mid n, \ d_r, & if \; n = rk. \end{array}
ight.$$

Received October 25, 1983.