TSUKUBA J. MATH. Vol. 8 No. 1 (1984). 171–182

A SUBMANIFOLD WHICH CONTAINS MANY EXTRINSIC CIRCLES

By

Koichi OGIUE and Ryoichi TAKAGI

Dedicated to Professor Kentaro Yano in honor of the Second Order of Merit

1. Introduction

There are many simple characterizations of a sphere in E^3 , which are either elementary geometric or differential geometric. For example,

 (E_1) It "looks round" from an arbitrary point.

or

 (E_2) A section with an arbitrary plane is a circle.

gives an elementary geometric criterion for a surface to be a sphere. On the other hand,

or

 (D_2) Every geodesic is a plane curve.

gives a differential geometric criterion for a compact surface to be a sphere.

A condition such as (D_2) is simple and logical but *not practical*, because it is not so easy for an observer in E^3 to know practically that a curve on a surface is a geodesic or not.

On the contrary, it is easy to know that a curve in E^3 is a circle or not and is contained in a surface or not.

Therefore we consider an elementary geometric condition such as

(*) A circle in E^3 of (arbitrarily) given radius can be pressed entirely on an arbitrary position of a surface.

It is easy to see that (*) is a condition for a compact surface to be a sphere. A condition such as (*) is practical in the sense that it is available in verifying the sphericity of a given physical solid. We emphasize that such a condition is quite natural because an observer is an inhabitant of an ambient space. But, (*) requires a very large quantity of information because of its condition "an arbitrary position".

Received September 2, 1983.