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1. Introduction

There are many simple characterizations of a sphere in $E^{3}$ , which are either
elementary geometric or differential geometric. For example,
$(E_{1})$ It “ looks round “ from an arbitrary point.
or
$(E_{2})$ A section with an arbitrary plane is a circle.
gives an elementary geometric criterion for a surface to be a sphere. On the
other hand,

or
$(D_{2})$ Every geodesic is a plane curve.
gives a differential geometric criterion for a compact surface to be a sphere.

A condition such as $(D_{2})$ is simple and logical but not practical, because it is
not so easy for an observer in $E^{a}$ to know practically that a curve on a surface
is a geodesic or not.

On the contrary, it is easy to know that a curve in $E^{3}$ is a circle or not and
is contained in a surface or not.
Therefore we consider an elementary geometric condition such as

$(*)$ A circle in $E^{3}$ of (arbitrarily) given radius can be pressed entirely on an
arbitrary position of a surface.

It is easy to see that $(*)$ is a condition for a compact surface to be a sphere. A
condition such as $(*)$ is practical in the sense that it is available in verifying the
sphericity of a given physical solid. We emphasize that such a condition is quite

natural because an observer is an inhabitant of an ambient space. But, $(*)$ requires

a very large quantity of information because of its condition “ an arbitrary position”.
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