ON RESOLUTIONS FOR PAIRS OF SPACES

by

Sibe Mardešić

1. Introduction

Let (X, A) be a pair of topological spaces, $A \subseteq X$, and let $(X, A) = ((X_{\lambda}, A_{\lambda}), p_{\lambda\lambda'}, A)$ be an inverse system of pairs of spaces and maps of pairs indexed by a directed set A. By a morphism $p: (X, A) \to (X, A)$ of pro-Top² we mean a collection of maps of pairs $p_{\lambda}: (X, A) \to (X_{\lambda}, A_{\lambda})$ such that

$$p_{\lambda\lambda'}p_{\lambda'}=p_{\lambda}, \ \lambda\leq\lambda'$$
.

A resolution of (X, A) is a morphism $\mathbf{p} = (p_{\lambda}): (X, A) \to (\mathbf{X}, \mathbf{A})$ of pro-Top², which satisfies the following two conditions.

(R1) Let (P, Q) be an ANR-pair, i.e., a pair of ANR's for metric spaces such that Q is a closed subset of P. Let $\subset V$ be an open covering of P and let $f:(X, A) \rightarrow (P, Q)$ be a map of pairs. Then there there exists a $\lambda \in \Lambda$ and a map of pairs $g:(X_{\lambda}, A_{\lambda}) \rightarrow (P, Q)$ such that gp_{λ} and f are $\subset V$ -near maps.

(R2) Let (P, Q) be an ANR-pair and let $\neg \mathcal{V}$ be an open covering of P. Then these exists an open covering $\neg \mathcal{V}'$ of P such that whenever $\lambda \in \Lambda$ and $g, g': (X_{\lambda}, A_{\lambda}) \rightarrow$ (P, Q) are maps such that the maps gp_{λ} and $g'p_{\lambda}$ are $\neg \mathcal{V}'$ -near, then there exists a $\lambda' \geq \lambda$ such that the maps $gp_{\lambda\lambda'}$ and $g'p_{\lambda\lambda'}$ are $\neg \mathcal{V}$ -near.

If all $(X_{\lambda}, A_{\lambda})$ are ANR-pairs (polyhedral pairs), we speak of an ANR-resolution (polyhedral resolution) of the pair (X, A).

If we leave out A, A_{λ} and Q, the above definition reduces to the definition of a resolution $p: X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ (ANR-resolution or polyhedral resolution, resp.) of a single space X.

The notion of resolution of a space was introduced in 1981 by the author [4] (also see [5] and [6]). Resolutions for pairs were first considered in [6].

Resolutions can be viewed as special inverse limits. In fact, these notions coincide for compact spaces [6]. In the non-compact case resolutions appear to be the appropriate substitutes for inverse limits, the latter notion being only of little value for non-compact spaces.

Received June 22, 1983.