ON A PROBLEM OF MAHLER FOR TRANSCENDENCY OF FUNCTION VALUES II

By

Kumiko NISHIOKA

1. Introduction.

In what follows, Ω is a $n \times n$ matrix whose entries are non-negative integers, and Ω satisfies:

(0) The characteristic polynomial of Ω is irreducible over Q, the field of rational numbers, and Ω has the eigenvalues $\rho_1, \rho_2, \cdots, \rho_n$ such that $\rho_1 > 1$ and $\rho_1 > |\rho_2| \ge \cdots \ge |\rho_n|$.

Let (A_{ij}) be the classical adjoint (the transpose of the matrix of cofactors) of matrix $\Omega - \rho_1 E$, where E is the $n \times n$ identity matrix. For a non-negative integer k, we put $\Omega^k = (o_{ij}^{(k)})$, and for a *n*-tuple of independent variables $z = (z_1, \dots, z_n)$, we define

$$T^{k}z = (z_{1}^{(k)}, \cdots, z_{n}^{(k)}), \ z_{i}^{(k)} = \prod_{j=1}^{n} z_{j}^{o_{ij}^{(k)}}.$$

Let F be a finite algebraic number field and $f(z) = \sum_{h_i \ge 0} a_{h_1 \cdots h_n} z_1^{h_1} \cdots z_n^{h_n}$ be a power series with coefficients in F. By \overline{Q} we denote the algebraic closure of Q in C, the field of complex numbers. Mahler [4] proved:

THEOREM (Mahler). Let f(z) be not algebraic over $\overline{Q}(z_1, \dots, z_n)$ and satisfy the functional equation

$$f(Tz) = \sum_{i=0}^{m} a_i(z) f(z)^i / \sum_{i=0}^{m} b_i(z) f(z)^i,$$

where the coefficients $a_i(z)$ and $b_i(z)$ are polynomials with algebraic coefficients and $m < \rho_1$. $\Delta(z)$ denotes the resultant of $\sum_{i=0}^m a_i(z)u^i$ and $\sum_{i=0}^m b_i(z)u^i$ as polynomials in u. If $\alpha = (\alpha_1, \dots, \alpha_n) \in \overline{Q}^n$ satisfies that $\alpha_1 \dots \alpha_n \neq 0$, the real part of $\sum_{j=1}^n |A_{1j}| \log \alpha_j$ is negative, f(z) converges at $z = \alpha$ and $\Delta(T^k \alpha) \neq 0$ for all $k \ge 0$, then $f(\alpha)$ is transcendental.

For example, $f(z) = \sum_{h=0}^{\infty} z^{2^h}$ satisfies the functional equation $f(z^2) = f(z) - z$. Then for an algebraic number such that $0 < |\alpha| < 1$, $f(\alpha)$ is transcendental. Refer to Loxton and van der Poorten [2], [3] for other examples. Mahler [5], [6]

Received February 7, 1983