PROPERTIES OF AN L-CARDINAL

By

Yoshihiro ABE

When we study the set theory ZF(aa), (Ref. [1] or [3]) it may be natural to consider a cardinal κ such that for every formula in the language of usual set theory,

$$\mathbf{R}(\kappa) \models a a \alpha \phi \longleftrightarrow \mathbf{V} \models a a \alpha \phi.$$

Let κ be measurable, M a transitive isomorph of V^{κ}/U where U is a normal ultrafilter on κ , and j the canonical elementary embedding of V into M. If "aa" is interpreted by the closed umbounded filter of κ and $j(\kappa)$ respectively, in M,

$$\boldsymbol{R}(\boldsymbol{\kappa}) \models a \, a \, \alpha \, \phi \longleftrightarrow \boldsymbol{R}(j(\boldsymbol{\kappa})) \models a \, a \, \alpha \, \phi \, .$$

Therefore measurability is sufficient to show the consistency of the desired situation. But when we want κ to have this property in full V, a new cardinal axiom is needed.

1. Definitions of an L-cardinal and its basic properties.

DEFINITION. Let ϕ be a formula in set theory whose constants are all in $R(\kappa)$, and λ be an ordinal $\geq \kappa$.

a) A cardinal κ is a $(\phi - \lambda)$ -cardinal, if there exists an elementary embedding $j: V \rightarrow M$ such that

(i) $j(\kappa) > \lambda$ and κ is the least ordinal moved by j,

(ii) for every x in $R(j(\kappa))^M$, $M \models \phi(x) \rightarrow V \models \phi(x)$.

b) κ is a ϕ -cardinal if for every $\lambda > \kappa$, κ is a $(\phi - \lambda)$ -cardinal.

c) κ is a Σ_n -cardinal if for every Σ_n formula ϕ , κ is a ϕ -cardinal.

d) Let A be a set of formulas, κ is a $(A-\lambda)$ -cardinal if for every formula in A, κ is a $(\phi-\lambda)$ -cardinal.

e) κ is an L-cardinal if for every formula ϕ , κ is a ϕ -cardinal.

The axiom of an L-cardinal definitely cannot be formulated in ZFC. However, all the arguments can be carried out in ZFC within some $R(\kappa)$ where κ is inaccessible.

The first lemma is trivial but basic in the development.

Received October 20, 1982