THE CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM FOR WEAKLY DEPENDENT RANDOM VARIABLES

By

Ryozo Yokoyama

1. Introduction.

Let (Ω, \mathcal{F}, P) be a probability space. For any two σ -fields \mathcal{A} and \mathcal{B} define the mixing coefficients ϕ and α and the maximal correlation coefficient ρ by

$$\begin{split} \phi(\mathcal{A}, \ \mathcal{B}) &= \sup |P(B|A) - P(B)| \qquad A \in \mathcal{A}, \ B \in \mathcal{B}, \ P(A) > 0; \\ \alpha(\mathcal{A}, \ \mathcal{B}) &= \sup |P(A \cap B) - P(A)P(B)| \qquad A \in \mathcal{A}, \ B \in \mathcal{B}; \\ \rho(\mathcal{A}, \ \mathcal{B}) &= \sup |\operatorname{Corr}(\xi, \ \eta)| \qquad \xi \in L^2(\mathcal{A}), \ \eta \in L^2(\mathcal{B}). \end{split}$$

Let $\{X_j: -\infty < j < \infty\}$ be a strictly stationary sequence of random variables on (Ω, \mathcal{F}, P) . For integers n let \mathcal{P}_n be the σ -field generated by $\{X_j: j \leq n\}$ and \mathcal{F}_n the σ -field generated by $\{X_j: j \geq n\}$. The sequence $\{X_j\}$ is said to be ϕ -mixing (or uniformly mixing) if

$$\phi(n) \equiv \phi(\mathcal{P}_0, \mathcal{F}_n) \rightarrow 0$$
 as $n \rightarrow \infty$

(see Ibragimov [9]), strongly mixing if

 $\alpha(n) \equiv \alpha(\mathcal{P}_0, \mathcal{F}_n) \rightarrow 0$ as $n \rightarrow \infty$

(see Rosenblatt [15]) and completely regular if

$$\rho(n) \equiv \rho(\mathcal{P}_0, \mathcal{F}_n) \rightarrow 0$$
 as $n \rightarrow \infty$

(see Kolmogorov-Rozanov [13]).

Among these coefficients, the following inequalities always hold:

$$4\alpha(n) \leq \rho(n) \leq 2\phi^{1/2}(n) \, .$$

The left-hand inequality is an easy consequence of the definitions of the coefficients $\alpha(n)$ and $\rho(n)$, and the right-hand inequality is a consequence of the Ibragimov fundamental inequality for ϕ -mixing sequences (see [11, Theorem 17.2.3, p. 309]). Thus a ϕ -mixing sequence is completely regular (the converse

Received October 27, 1982.