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1. Introduction.

In this paper we mean by a space a topological space with no separation
axiom unless otherwise specified, and we denote by R and I the real line and
the closed unit interval respectively.

Given two spaces X and Y, let F(X, Y) denote the set of all maps from X
into Y, C(X, Y) the set of all continuous maps from X into Y. In case Y is the
real line R, C(X, R) is denoted more simply by C(X). The map p: F(XXY, T)
—F(Y, F(X, T)) defined by the formula [p(f)(»)1(x)=/f(x, y) for fEF(XXY, T)
is bijective; this correspondence is called the exponential map.

A topology on C(X, T) ‘is called proper if for every space Y and any
feC(XXY, T) the map p(f) belongs to C(Y, C(X, T)). Similarly, a topology on
C(X, T) is called admissible if for every space Y and any geC(Y, C(X, T)) the
map p~(g) belongs to C(XXY, T). A topology on C(X, T) that is both proper
and admissible is called an acceptable topology (see [1], [2] and [3]).

As is well known, the compact-open topology on C(X, T) is acceptable for
any space T when X is locally compact Hausdorff (see [4]). Furthermore, the
following theorem was proved by R. Arens [1].

THEOREM 1.1. Let X be a Tychonoff space. Then the following conditions
are equivalent.

(1) X 1s locally compact.

(2) There exists an acceptable topology on C(X).

In the case that X is not necessarily Tychonoff, Professor T. Ishii raised the
following problem: Characterize a space X such that there exists an acceptable
topology on C(X).

The main purpose of this paper is to give the solution for this problem by
proving the following theorem.
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