KOSTANT'S WEIGHTING FACTOR IN MACDONALD'S IDENTITIES

By

Howard D. FEGAN and Stephen P. PETERSON

I. Introduction

Macdonald's identities can be interpreted in terms of the fundamental solution, $H(x, t)$, of the heat equation on a compact Lie group G. In the notation of [2] this is

$$
H(a, t) = e^{-i\pi k t/12} \eta(t)^k.
$$
 (1.1)

Equation (1.1) can be obtained in two ways. One due to Kostant [3] and the other due to Van Asch [5]. The purpose of this paper is to point out that ^a key step in each of these derivations is in fact the same. This is done in the proof of Theorem 1.1.

THEOREM 1.1. Let P be the lattice of weights and P^{*} its dual. If ρ is half the sum of the positive roots, λ a dominant weight such that $\lambda = s\rho-\rho+\mu$ for $s\in W$, the Weyl group, $\sigma: t\rightarrow t^{*}$ the isomorphism induced by the Killing form, and $\mu\!\in\!(1/2)\sigma P^{*}$, then $\chi_{\lambda}(a)$ = det s. For all other λ , $\chi_{\lambda}(a)=0$, where a is an element "principal of type $\rho"$

The derivation of Kostant involves rewriting Macdonald's original identities in terms of the highest weights of representations. In doing so the term $\chi_{\lambda}(a)$ was introduced. Here $\chi_{\lambda}(a)$ is the value of the character with highest weight λ on a special point a called "principal of type ρ ". It is clear from Kostant's work that $\chi_{\lambda}(a)$ is either $+1, -1,$ or 0.

Meanwhile, Van Asch [5] gave ^a direct proof of Macdonald's identities using the Poisson summation formula. Fegan, in [2], related this to the heat equation, ^a step involving writing ^a sum over ^a full lattice as ^a sum over the highest weights of representation. In both cases there is the need to reduce the sum over a lattice P to a sum over a sublattice. The point of this paper is to show that the changes of Kostant and Van Asch are essentially the same.

While the formula of Theorem 1.1 is essentially contained in [3] the proof

Received March 3, 1982. Revised June 15, 1982.