HAPPLEL-RINGEL'S THEOREM ON TILTED ALGEBRAS

By

Mitsuo Hoshino

In [4], Happel-Ringel have generalized the earlier work of Brenner-Butler [3] and extensively developed the theory of tilting modules. They have also introduced the notion of tilted algebras.

Let A be an artin algebra and T_A a finitely generated right A-module. Recall that T_A is said to be a *tilting module* if it satisfies the following three conditions:

(1) proj dim $T_A \leq 1$.

(2) $Ext_{A}^{1}(T_{A}, T_{A})=0.$

(3) There is an exact sequence $0 \rightarrow A_A \rightarrow T'_A \rightarrow T''_A \rightarrow 0$ with T'_A , T''_A direct sums of direct summands of T_A .

If A is hereditary, the endomorphism algebra $B = \text{End}(T_A)$ of a tilting module T_A is said to be a *tilted algebra*.

In [4, Theorem 7.2], it has been shown that an artin algebra B is a tilted algebra if there is a component of the Auslander-Reiten quiver of B which contains all indecomposable projective modules and a finite complete slice.

Recall that a set \mathcal{U} of indecomposable modules in a component \mathcal{C} of the Auslander-Reiten quiver of an artin algebra is said to be a *complete slice* in \mathcal{C} if it satisfies the following three conditions:

(i) For any indecomposable module X in C, U contains precisely one module from the orbit $\{\tau^z X | z \in \mathbb{Z}\}$ under τ , τ^{-1} .

(ii) If there is a chain $X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_r$ of indecomposable modules and nonzero maps with X_0 , X_r in \mathcal{U} , then all X_i belong to \mathcal{U} .

(iii) There is no oriented cycle $U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_r \rightarrow U_0$ of irreducible maps with all U_i in \mathcal{U} .

The aim of this note is to show that the condition (iii) in the definition of a complete slice is essentially dispensable, that is, to prove the following

THEOREM. Let B be a basic artin algebra. Assume that there is a component C of the Auslander-Reiten quiver of B which contains all indecomposable projective modules, and that there is a finite set $\mathcal{U} = \{U_1, \dots, U_n\}$ of indecom-Received November 18, 1981. Revised June 7, 1982.