ON REFLECTION PRINCIPLES

By

Akito TSUBOI

Introduction.

In this paper, we shall consider various forms of reflection principles for 1-st order theories containing arithmetic. If a 1-st order theory T contains arithmetic, we can express various notions concerning T within T itself, by using the coding method developed by K. Gödel. K. Gödel assigned each formula ϕ in the language of T a number $\lceil \phi \rceil$ (the Gödel number of ϕ), but our method is slightly different.

We assume that variables, individual constants, relation symbols and function symbols are numbers, and logical symbols $(*_{\wedge}*, *^{\vee}*, \neg *, * \rightarrow *, \forall **, \exists **)$ are operations on numbers. Under these assumptions, a formula ϕ itself is a number and a theory T, which is a set of sentences, can be conceived as a subset of ω (the set of natural numbers). Let S be a theory and A a subset of ω . We say a formula $\alpha(x)$ in the language of S numerates A in S if, for any $n \in \omega$,

$$n \in A$$
 iff S proves $\alpha(\bar{n})$,

where \overline{n} denotes the *n*-th numeral, i.e., the term of S which expresses the number *n*. In this case, we call this α a numeration of A in S. If α numerates A in S and $\neg \alpha$ numerates $\omega \setminus A$ in S, we say α binumerates A in S, and α is called a binumeration of A in S.

Let $A = \{n_1, \dots, n_m\}$ be a subset of ω . Then [A] denotes the formula $x = \bar{n}_1 \vee \dots \vee x = \bar{n}_m$. Clearly [A] binumerates A in any theory S which contains arithmetic.

If a binumeration τ of a theory T in a theory S is given, we can construct a provability formula $Pr_{\tau}(x)$ whose intuitive meaning is that a formula x is provable in T. The reader should note that this Pr_{τ} cannot be uniquely determined by T, but is determined by τ . (The explicit definition of Pr_{τ} can be found in p. 59 of [1].)

Using this Pr_{τ} , we define the τ -reflection principle $Rfn(\tau)$ and the τ -reflection principle $Rfn_A(\tau)$ based on A:

Received October 9, 1981. Revised March 26, 1982.