A BOOLEAN POWER AND A DIRECT PRODUCT OF ABELIAN GROUPS

By

Katsuya EDA

A group means an abelian group in this paper. A Boolean power and a direct product of groups consist of all global sections of groups in some Boolean extensions $V^{(B)}$. We shall study about a homomorphism h whose domain is a group consisting of all the global sections of a group in $V^{(B)}$. We investigate two cases: one of them is that the range of h is a slender group, which is related to a torsion-free group, and the other is that the range of h is an infinite direct sum, which is related to a torsion group. We extend a few theorems which have been obtained in [4] and [5]. As in [5], we not only extend theorems, but improve them and give a good standing point of view.

We refer the reader to [9] or [1], for a Boolean extension $V^{(B)}$. We shall use notations and terminologies in [5], [6] and [7]. Throughout this paper, Bis a complete Boolean algebra and $\mathcal F$ is the set of all countably complete maximal filters on B. We do not mention these any more. \check{x} is the element of $V^{(B)}$ such that dom $\check{x} = \{\check{y}; y \in x\}$ and range $x \subseteq \{1\}$. As noted in [5], " \hat{x} " in [1] means our " \check{x} ". $\hat{x} = \{y; [y \in x] = 1 \text{ and } y \in V^{(B)}\}$ for $x \in V^{(B)}$, where $V^{(B)}$ is separated. For $b \in B$ and a group A in $V^{(B)}$, i.e. [A is a group] = 1, \hat{A}^b is the subgroup of \hat{A} such that $x \in \hat{A}^b$ iff $x \in \hat{A}$ and $-b \leq [x=0]$, where 0 is the unit of A. By this notation, $\hat{A} = \hat{A}^{1}$. For $x \in \hat{A}$, x^{b} is the element of \hat{A}^{b} such that $b \leq [x = x^b]$.

1. A general setting about a complete Boolean algebra

Let $\Phi(b)$ be a property of $b \in B$ which satisfies the following conditions:

- (1) if $\{b_n; n \in N\}$ is a pairwise disjoint subset of **B**, there exists k such that $\Phi(\bigvee_{n>k} b_n) \text{ and } \Phi(b_n) \text{ hold for each } n \ge k;$
- (2) if $b \wedge c = 0$, $\Phi(b)$ and $\Phi(c)$ hold, then $\Phi(b \vee c)$ holds.

Let S be the subset of **B** such that $b \in S$ iff $\Phi(b)$ does not hold and $c \wedge c'$ =0 implies $\Phi(c)$ or $\Phi(c')$ for any $c, c' \leq b$.

Received February 18, 1982.

The author is partially supported by Grant-in-Aid for Encouragement of Young Scientist Project No. 56740087.