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CLASS GROUPS OF GROUP RINGS WHOSE COEFFICIENTS
ARE ALGEBRAIC INTEGERS

By
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Let $R$ be the ring of integers of an algebraic number field $k$ . Let $\Lambda$ be an
R-order in a finite dimensional semisimple k-algebra $A$ . We mean by the class
group of $\Lambda$ the class group defined by using locally free left $\Lambda$ -modules and
denote it by $C(\Lambda)$ . We define $D(\Lambda)$ to be the kernel of the natural subjection
$C(\Lambda)\rightarrow C(\Omega)$ , where $\Omega$ is a maximal R-order in $A$ containing $\Lambda$ , and denote by

$d(\Lambda)$ the order of $D(\Lambda)$ . $C(\Omega)$ is isomorphic to a (narrow) ideal class group of
the center of $A$ , which is a product of the ideal class groups of algebraic num-
ber fields with modulus some real infinite primes. Hence, in a sense, we may

concentrate on $D(\Lambda)$ .
Let $G$ be a finite group and let $RG$ be the group ring of $G$ with coefficients

in $R$ . Then $RG$ can be regarded as an R-order in the semisimple k-algebra
$kG$ . We define $T(RG)$ to be the kernel of the natural surjection $ C(RG)\rightarrow$

$G(R)\oplus C(RG/(\Sigma_{G}))$ , where $\Sigma_{G}=\sum_{g\in G}g\in RG$ , and denote by $t(RG)$ the order of

$T(RG)$ . Then $T(RG)\cong Ker(D(RG)\rightarrow D(RG/(\Sigma_{G})))$ . Throughout this paper, $C_{n}$

denotes the cyclic group of order $n$ and $p$ stands for a rational prime.

Much investigation has been done on $D(ZG)$ and $T(ZG)$ (cf. [8]), but the
results seem to depend on the speciality of $Z$.

The purpose of this paper is to study $D(RG)$ for the case where $R\neq Z$. In

\S 1 we give some basic results on $D(RG)$ and $T(RG)$ . In \S 2\sim \S 4 we assume
that $R$ is the ring of integers in a quadratic field. We first give some results

on $D(RC_{p^{e}})$ , and next examine the structure of $D(RC_{p})$ .
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\S 1.

For a ring $S,$ $U(S)$ denotes its unit group. For an abelian group $A$ and a
positive integer $q,$

$A^{(q)}$ denotes the q-part of $A$ and $A^{(q^{\prime})}$ denotes the maximal
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