ON OBSERVABLE AND STRONGLY OBSERVABLE HOPF IDEALS

By

Hiroshi Shigano

Let $\mathfrak{G} = \mathfrak{Sp}_k A$ be an affine group scheme over a ground field $k, \mathfrak{H} = \mathfrak{Sp}_k A / I$ a closed subgroup scheme and \overline{k} denote an algebraic closure of k. When \mathfrak{G} is algebraic and $\mathfrak{G}(k)$ is dense in $\mathfrak{G}(\bar{k})$, Bialynichi-Birula, Hochschild and Mostow defined in their paper [1] that $\mathfrak{H}(k)$ is observable in $\mathfrak{G}(k)$ if every finite dimensional rational $\mathfrak{H}(k)$ -module can be embedded in a rational $\mathfrak{G}(k)$ -module as a $\mathfrak{H}(k)$ -module, and showed that one of its necessary and sufficient conditions is $\mathfrak{G}(\bar{k})/\mathfrak{H}(\bar{k})$ being a quasi-affine variety. When \mathfrak{G} is algebraic and reduced, and $k = \bar{k}$, Cline, Parshall and Scott defined in their paper [2] that $\mathfrak{H}(k)$ is strongly observable in $\mathfrak{G}(k)$ if every rational $\mathfrak{H}(k)$ -module N can be embedded in a rational $\mathfrak{G}(k)$ -module M as a $\mathfrak{H}(k)$ -module such that $N^{\mathfrak{V}(k)} = M^{\mathfrak{V}(k)}$, and showed that one of its necessary and sufficient conditions is $\mathfrak{G}(k)/\mathfrak{H}(k)$ being an affine variety. Since these concepts are the representation-theoretic ones, we can extend them to a Hopf ideal of an arbitrary (not necessarily commutative) Hopf algebra. In this paper, we characterize a strongly observable Hopf ideal of an arbitrary Hopf algebra; a Hopf ideal I of a Hopf algebra A is strongly observable if and only if A is an injective A/I-comodule. This result and the one of M. Takeuchi [10] give the following equivalent characterizations of a strongly observable k-subgroup \mathfrak{H} of an affine k-group \mathfrak{G} ; (1) $\mathcal{O}(\mathfrak{G})$ is an injective k- \mathfrak{H} -module, (2) \mathfrak{H} is exact in \mathfrak{G} and (3) $\mathfrak{G}/\mathfrak{H}$ is affine. This is a generalization of a main theorem in [2]. In case of observable Hopf ideals, we do not have such a general characterization except the case when Hopf algebras are commutative. So we can extend some results in [1] to affine k-groups. One of them is that $(\hat{\mathfrak{G}}/\mathfrak{H})$ is quasi-affine if and only if *I* is observable in *A* and $R = A \square_{A/I} k$ contains a simple left coideal M such that $M \subset \sqrt{\mathfrak{A}}$ for any left coideal-ideal \mathfrak{A} in R, where \Box denotes the cotensor product (see the first section).

Section 1 contains some preliminary results on cotensor products of comodules and injective comodules. It also contains one main result; for a Hopf ideal I of an arbitrary Hopf algebra A, A is an injective A/I-comodule if and only if A is an injective cogenerator for the category of A/I-comodules (1.6). Section 2 gives a characterization of a strongly observable Hopf ideal. Section 3 gives some results

Received Desember 22, 1980. Revised March 9, 1982.