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In this note we give a differential geometric characterization of self-dual cones
among affine homogeneous convex domains not containing any full straight line.
Let 2 be an affine homogeneous convex domain in an #z-dimensional real vector
space V™. Then 2 admits an invariant volume element
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and the canonical bilinear form defined by
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is positive definite and so gives an invariant Riemannian metric on £, where
{x!,---, "} is an affine coordinate system on V" [5]. In an affine coordinate system
{z', .-+, 2"} the components of the Riemannian connection I" and the Riemannian
curvature tensor R for ¢ are expressed as follows
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where Gij = 3o~ and %} 9"2gp;=0%; (Kronecker’s delta). Since 5 %} 9 S Tomton?

defines a tensor field on £, we denote this tensor field by the same letter 7.

An open convex set 2 in V" is called a cone with vertex o if o+A(x—0)ef
for all ze2 and 2>0. An open convex cone 2 with vertex o is said to be a self-
dual cone if V" admits an inner product ¢ , > such that

(i) <xz—o,y—0>>0 for all z,yeQ;

(i) if xeV™ is a vector such that {z—o,y—0)>=0 for all ye2 then zel?,
where £ is the closure of 2 in V™
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