A DIFFERENTIAL GEOMETRIC CHARACTERIZATION OF HOMOGENEOUS SELF-DUAL CONES

(Dedicated to Professor K. Murata on his sixtieth birthday)

By

Hirohiko SHIMA

In this note we give a differential geometric characterization of self-dual cones among affine homogeneous convex domains not containing any full straight line. Let Ω be an affine homogeneous convex domain in an *n*-dimensional real vector space V^{n} . Then Ω admits an invariant volume element

$$
(1) \t\t\t v = \phi dx^1 \wedge \cdots \wedge dx^n
$$

and the canonical bilinear form defined by

(2)
$$
g = \sum_{i,j} \frac{\partial^2 \log \phi}{\partial x^i \partial x^j} dx^i dx^j
$$

is positive definite and so gives an invariant Riemannian metric on Ω , where $\{x^{1}, \dots, x^{n}\}$ is an affine coordinate system on $V^{n}[5]$. In an affine coordinate system $\{x^{1}, \dots, x^{n}\}\$ the components of the Riemannian connection Γ and the Riemannian curvature tensor R for g are expressed as follows

(3)
$$
\Gamma^{i}{}_{jk} = \frac{1}{2} \sum_{p} g^{ip} \frac{\partial^{3} \log \phi}{\partial x^{j} \partial x^{k} \partial x^{p}},
$$

(4)
$$
R^{i}{}_{jkl} = \sum_{p} (\Gamma^{i}{}_{pk} \Gamma^{p}{}_{jl} - \Gamma^{i}{}_{pl} \Gamma^{p}{}_{jk}),
$$

where $g_{ij} = \frac{\partial^2 \log \phi}{\partial x^i \partial x^j}$ and $\sum_p g^{ip} g_{pj} = \delta^i{}_j$ (Kronecker's delta). Since $\frac{1}{2} \sum_p g^{ip} \frac{\partial^3 \log \phi}{\partial x^j \partial x^k \partial x^p}$ defines a tensor field on Ω , we denote this tensor field by the same letter Γ .

An open convex set Ω in V^{n} is called a cone with vertex σ if $o+\lambda(x-o)\in\Omega$ for all $x \in \Omega$ and $\lambda > 0$. An open convex cone Ω with vertex σ is said to be a selfdual cone if V^{n} admits an inner product \langle , \rangle such that

(i) $\langle x-a, y-a\rangle>0$ for all $x, y\in\Omega$;

(ii) if $x\in V^{n}$ is a vector such that $\langle x-o, y-o\rangle\geq 0$ for all $y\in\overline{\Omega}$ then $x\in\overline{\Omega}$, where $\overline{\Omega}$ is the closure of Ω in V^{n} .

Received March 24, 1981. Revised November 30, 1981.