A DIFFERENTIAL GEOMETRIC CHARACTERIZATION OF HOMOGENEOUS SELF-DUAL CONES

(Dedicated to Professor K. Murata on his sixtieth birthday)

By

Hirohiko Shima

In this note we give a differential geometric characterization of self-dual cones among affine homogeneous convex domains not containing any full straight line. Let Ω be an affine homogeneous convex domain in an *n*-dimensional real vector space V^n . Then Ω admits an invariant volume element

(1)
$$v = \phi dx^1 \wedge \cdots \wedge dx^n$$

and the canonical bilinear form defined by

(2)
$$g = \sum_{i,j} \frac{\partial^2 \log \phi}{\partial x^i \partial x^j} dx^i dx^j$$

is positive definite and so gives an invariant Riemannian metric on Ω , where $\{x^1, \dots, x^n\}$ is an affine coordinate system on V^n [5]. In an affine coordinate system $\{x^1, \dots, x^n\}$ the components of the Riemannian connection Γ and the Riemannian curvature tensor R for g are expressed as follows

(3)
$$\Gamma^{i}{}_{jk} = \frac{1}{2} \sum_{p} g^{ip} \frac{\partial^{3} \log \phi}{\partial x^{j} \partial x^{k} \partial x^{p}},$$

(4)
$$R^{i}_{jkl} = \sum_{p} \left(\Gamma^{i}_{pk} \Gamma^{p}_{jl} - \Gamma^{i}_{pl} \Gamma^{p}_{jk} \right),$$

where $g_{ij} = \frac{\partial^2 \log \phi}{\partial x^i \partial x^j}$ and $\sum_p g^{ip} g_{pj} = \delta^i_j$ (Kronecker's delta). Since $\frac{1}{2} \sum_p g^{ip} \frac{\partial^3 \log \phi}{\partial x^j \partial x^k \partial x^p}$ defines a tensor field on Ω , we denote this tensor field by the same letter Γ .

An open convex set Ω in V^n is called a cone with vertex o if $o + \lambda(x-o) \in \Omega$ for all $x \in \Omega$ and $\lambda > 0$. An open convex cone Ω with vertex o is said to be a selfdual cone if V^n admits an inner product \langle , \rangle such that

(i) $\langle x-o, y-o \rangle > 0$ for all $x, y \in \Omega$;

(ii) if $x \in V^n$ is a vector such that $\langle x-o, y-o \rangle \ge 0$ for all $y \in \overline{\Omega}$ then $x \in \overline{\Omega}$, where $\overline{\Omega}$ is the closure of Ω in V^n .

Received March 24, 1981. Revised November 30, 1981.