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ON THE CURVES OF GENUS $g$ WITH AUTOMORPHISMS
OF PRIME ORDER $2g+1$

By

Atsushi SEYAMA

Introduction.

Let $k$ be an algebraically closed field, and let $C$ be a (,omplete non-singular
curve of genus $g\geqq 2$ defined over $k$ . In [2], M. Homma showst hat if a prime
number $q$ is the order of an automorphism of $C$, then $q\leqq g+1$ or $q=2g+1$ . He
determines all $C$ in the case of $q=2g+1$ as follows:

(i) If $q$ is equal to the characteristic $p$ of $k$ , then $C$ is birationally equivalent
to the plane curve

$y^{2}=x^{q}-x$ .
(ii) If $q$ is not equal to $p$ , then $C$ is birationally equivalent to one of the fol-

lowing plane curves
$y^{m-r}(y-1)^{r}=x^{q}$ , $1\leqq r<m\leqq g+1$ .

The case (ii) shows, in particular, there may be many isomorphy classes of curves
of genus $g$ which admit an automorphism of prime order $2g+1\neq p$ . The aim of
this paper is to classify these curves.

Fix a prime number $q\geqq 5$ different from $p$. For a pair of positive integer $(r, s)$

such that any one of $r,$ $s$ and $r+s$ is coprime to $q$, let $C(r, s)$ be a non-singular
model of the irreducible equation

$y^{r}(y-1)^{s}=x^{q}$

over $k$ . Then the genus of $C(r, s)$ is $(q-1)/2$ and $C(r, s)$ has an automorphism of
order $q$ . In \S 1, we shall give a basis of the space ol differentials of the first kind
on $C(r, s)$ , in forms suitable to our later use. In \S 2, we shall give a condition
under which $C(r, s)^{\prime}s$ are isomorphic in terms of $r$ and $s$ . This is our main result.
In particular, we see that the cardinality of the set of isomorphy classes is, $(q+5)/6$

if $q\equiv 1mod 3$ , and $(q+1)/6$ if $q\equiv 2mod 3$ . In \S 3, we determine the order of the
group of automorphisms of $C(r, s)$ in the case of characteristic zero.
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