A NOTE ON SYMMETRY OF PERPENDICULARITY IN A G-SPACE WITH NONPOSITIVE CURVATURE

By

Nobuhiro INNAMI

1. Introduction.

Let \Re be a G-space. We denote by m(a, b), for $a, b \in \Re$, a midpoint so that am(a, b) = m(a, b)b = ab/2. The G-space \Re has "nonpositive curvature" if every point p has a neighborhood $S(p, \gamma_p)$, where $0 < \gamma_p < \rho_1(p)$ (see [3] for definition of $\rho_1(p)$), such that for any three points a, b, c in $S(p, \gamma_p)$ the relation $2m(a, b)m(a, c) \le bc$ holds, and R has "negative curvature" if 2m(a, b)m(a, c) < bc when a, b, c are not on one segment. Because a G-space \Re with nonpositive curvature is finite-dimensional according to V.N. Berestovskii [1], and hence R has "domain invariance" (see [4] p. 16), the universal covering space $\overline{\Re}$ of \Re is straight by Busemann [3] p. 254. Moreover the spheres in $\overline{\mathfrak{R}}$ are convex. The straight line L in a G-space is called a "*perpendicular*" to the set M at f, if $f \in L \cap M$ and every point of L has f as a foot on M, i.e., qf = qM for any $q \in L$. We say that perpendicularity between lines is symmetric if the following holds: if a straight line L is a perpendicular to a straight line G, then G is a perpendicular to L. We say that a set M of a G-space is totally convex if $p, q \in M$ implies that all geodesic curves from p to q are contained in M. If a closed set M of a G-space \Re in which the spheres are convex is totally convex, then for each $p \in \Re$ there is a unique point $q \in M$ such that pq = pM. If the spheres of a straight G-space are convex, we denote by W_p the point set carring straight lines through $p \in K(q, \sigma) := \{r; qr = \sigma\}$ but not through any point $p' \in S(q, \sigma) =$ $\{r; qr < \sigma\}$, which are called the supporting lines of $K(q, \sigma)$ at p. $K(q, \sigma)$ is "differentiable at $p \in K(q, \sigma)$ " if no proper subset of the W_p decomposes the space.

In the present paper we prove

THEOREM 1. Let \Re be a G-space of nonpositive curvature. If the spheres in the universal covering space $\overline{\Re}$ of \Re are differentiable and if perpendicularity between lines is symmetric in $\overline{\Re}$, then for every closed totally convex set M in \Re the map $\rho: \Re \to M$ defined by sending $p \in \Re$ to the foot of p on M is distance non-increasing. Further, if $pq = \rho(p)\rho(q) \neq 0$, then $S: = \bigcup_{0 \leq t \leq 1} T(p_t, q_t)$ is isometric to a trapezoid in a Minkowski plane, where $T(p_t, q_t)$ is the point set carring the segment from $p_t \in T(p, \rho(p))$ to $q_t \in T(q, \rho(q))$ with $pp_t: p_t \rho(p) = qq_t: q_t \rho(q) = t: (1-t)$.

Received August 24, 1981.