ITÉRATION CONTRÔLÉE DE LA FONCTION σ

Par

Edmondo Bedocchi

Le but de cette note est d'étudier les propriétés des suites définies de la façon suivante: soit $N=\{0,1,2,\cdots\}$ l'ensemble des nombres naturels et soit σ la fonction somme des diviseurs, pour tout $n \in N$, $n \geqslant 3$, je pose

$$S_0(n) = n,$$

$$S_{k+1}(n) = \begin{cases} \sigma(S_k(n)/2) & \text{si } S_k(n) \text{ est pair,} \\ \sigma(S_k(n)) & \text{si } S_k(n) \text{ est impair.} \end{cases}$$

Les problèmes que l'on peut traiter relativement à cette famille de suites sont semblables à ceux que l'on étudie relativement aux suites qui en anglais s'appellent 'aliquot sequences'. Avant d'initier l'exposition des résultats que j'ai obtenus pour les suites $(S_k(n))_{k \in \mathbb{N}}$, je vais donner quelques définitions.

- A) Étant donné la suite $(S_k(n))_{k \in \mathbb{N}}$, on dira que le nombre naturel n est le point initial de la suite.
- B) Soit $m \in \mathbb{N}$, on dira que la suite $(S_k(n))_{k \in \mathbb{N}}$ passe par m s'il existe $j \in \mathbb{N}$ tel que $S_j(n) = m$.
- C) Soit $(S_k(n))_{k \in \mathbb{N}}$ et soit $(S_k(m))_{k \in \mathbb{N}}$ deux suites, on dira que $(S_k(n))_{k \in \mathbb{N}}$ passe par $(S_k(m))_{k \in \mathbb{N}}$ s'il existe $j \in \mathbb{N}$ pour lequel la suite $(S_k(n))_{k \in \mathbb{N}}$ passe par $S_j(m)$.
- D) On dira que la suite $(S_k(n))_{k\in\mathbb{N}}$ est *périodique* s'il existe $i, j\in\mathbb{N}, i\neq j$, tels que $S_i(n)=S_j(n)$.
- E) Soit $(S_k(n))_{k\in\mathbb{N}}$ une suite périodique et soit (s,t) le plus petit élément (dans l'ordre lexicographique de $N\times N$) de l'ensemble $\{(i,j)|i\neq j \text{ et } S_i(n)=S_j(n)\}$. Le mot $S_0(n), S_1(n), \dots, S_{s-1}(n)$ (s'il existe) s'appellera partie apériodique de $(S_k(n))_{k\in\mathbb{N}}$ et s longueur de la partie apériodique. Le mot $S_s(n), S_{s+1}(n), \dots, S_{t-1}(n)$ s'appellera période de $(S_k(n))_{k\in\mathbb{N}}$ et t-s longueur de la période.
- F) Soit $(S_k(n))_{k\in\mathbb{N}}$ une suite périodique. Si la partie apériodique n'existe pas, c'est-à-dire si s du point E) est égal à zéro, on dira que la suite est *immédiatement périodique*.

Je vais exposer maintenant les résultats 'expérimentaux' trouvés.