ZETA FUNCTIONS OF INTEGRAL GROUP RINGS OF METACYCLIC GROUPS

By

Yumiko Hironaka

Recently, Solomon has introduced a zeta function which counts sublattices of a given lattice over an order ([5]). Let us recall the definition of this zeta function. Let Σ be a (finite dimensional) semisimple algebra over the rational field Qor over the *p*-adic field Q_p , and let Λ be an order in Σ . Λ is a *Z*-order when Σ is a *Q*-algebra, while Λ is a *Z_p*-order when Σ is a *Q_p*-algebra, where *Z_p* is the ring of *p*-adic integers. Throughout this paper, *p* stands for a rational prime and the subscript *p* indicates the *p*-adic completion.

Let V be a finitely generated left Σ -module, and let L be a full Λ -lattice in V. Solomon's zeta function is defined as

$$\zeta_{\Lambda}(L;s) = \sum_{N} (L:N)^{-s},$$

where the sum \sum_{N} extends over all full Λ -sublattices N in L, (L:N) denotes the index of N in L and s is a complex variable. We shall omit the subscript Λ and write $\zeta(L; s)$, unless there is danger of confusion. When Σ is a field K and L is the ring of integers in K, $\zeta_{K}(L; s)$ is the classical Dedekind zeta function, and we shall denote this by $\zeta_{L}(s)$.

We denote by C_n the cyclic group of order *n*. The explicite form of $\zeta(\mathbb{Z}G; s)$ has been given for each of the cases $G = C_p$ and C_{p^2} ([4], [5]).

Let q be a prime and let n be a square-free integer coprime to q. Let $C_n \cdot C_q$ be the semidirect product of C_n by C_q in which C_q acts faithfully on the subgroup C_p of C_n for every p|n. The aim of this paper is to give an explicit form of $\zeta(\mathbf{Z}(C_n \cdot C_q); s)$. We shall use the method introduced in [1].

§1. Let Λ be a **Z**-order in a semisimple **Q**-algebra Σ , and let \mathfrak{M} be a maximal **Z**-order containing Λ . Denote by S the set of primes p for which $\Lambda_p \neq \mathfrak{M}_p$. Since the zeta function satisfies the Euler product identity ([5]), we have

(1.1)
$$\zeta_{\mathcal{A}}(\Lambda;s) = \zeta_{\mathfrak{M}}(\mathfrak{M};s) \times \prod_{p \in S} \frac{\zeta_{Ap}(\Lambda_{p};s)}{\zeta_{\mathfrak{M}_{p}}(\mathfrak{M}_{p};s)}.$$

Received April 17, 1981.