SHAPE FIBRATIONS AND FIBER SHAPE EQUIVALENCES, I

By

Hisao Kato

0. Introduction.

In [6], Coram and Duvall introduced approximate fibrations and Mardešić and Rushing [11] generalized this and defined shape fibrations. For compact ANR's, shape fibrations agree with approximate fibrations. M. Jani, analogous to fiber maps, defined fiber morphisms and fiber shape equivalences [8]. In [4], Chapman proved the Complement Theorem, i.e., if X and Y are Z-sets in the Hilbert cube Q, then X and Y have the same shape (i.e., Sh(X)=Sh(Y), see [2]) iff Q-X and Q-Yare homeomorphic.

In this paper, we define notions of fiber fundamental sequences and fiber shape equivalences and prove that if a fiber fundamental sequences between approximate fibrations is a shape equivalence, then it is a fiber shape equivalence. Also, we prove the following: Let E, E' and B be compact in the Hilbert cube Q and let $E, E' \subset Q$ be Z-sets. Then a map $p: E \rightarrow B$ over B is fiber shape equivalent to a map $p': E' \rightarrow B$ over B if and only if there is a homeomorphism $h: Q - E \cong Q - E'$ such that for each $b \in B$ and each neighborhood W' of $p'^{-1}(b)$ in Q, there is a neighborhood W of $p^{-1}(b)$ in Q such that $h(W - E) \subset W' - E'$.

All spaces considered will be metrizable. If x and y are points of a metric space, d(x, y) denotes the distance from x to y. A proper map $p: E \rightarrow B$ between locally compact, separable metric ANR's is an *approximate fibration* [6] if given an open cover U of B, a space X and maps $h: X \rightarrow E$, $H: X \times I \rightarrow B$ such that $ph=H_0$, then there is a homotopy $\tilde{H}: X \times I \rightarrow E$ such that $\tilde{H}_0 = h$ and H and $p\tilde{H}$ are U-close, where $H_l(x) = H(x, t)$. Let $\underline{E} = (E_i, q_{ij})$ and $\underline{B} = (B_i, r_{ij})$ be inverse sequences of compacta and let $\underline{p} = (p_i)$ be a sequence of maps $p_i: E_i \rightarrow B_i$. Then $\underline{p}: \underline{E} \rightarrow \underline{B}$ is a *level* map if for any i and $\underline{j} \ge i$, $p_i q_{ij} = r_{ij} p_j$. A map $p: \underline{E} \rightarrow B$ between compacta is a shape fibration [11] if there is a level map $\underline{p}: \underline{E} \rightarrow \underline{B}$ of compact ANR-sequences with $\lim_{t \to \infty} \underline{E} = E$, $\lim_{t \to \infty} \underline{B} = B$ and $\lim_{t \to \infty} \underline{p} = p$ satisfying the following property; for each i and $\varepsilon > 0$ there is $\underline{j} \ge i$ and $\delta > 0$ such that for any space X and any $h: X \rightarrow E_j$, $H: X \times I \rightarrow B_j$ with $d(p_j h, H_0) = \sup_{t \to \infty} \{d(p_j h(x), H_0(x)) | x \in X\} < \delta$, there is a homotopy

Received October 13, 1980. Revised March 19, 1981.