NON-STANDARD REAL NUMBER SYSTEMS WITH REGULAR GAPS

By

Shizuo KAMO

The purpose of this paper is to show that if an enlargement *M of the universe M is saturated, then the non-standard real number system *R has a regular gap and the uniform space (*R, E[L(1)]) is not complete.

Our notions and terminologies follow the usual use in the model theory. Let $G = \langle G, +, \rangle$ be a first order structure which satisfies

(a) the axioms of ordered abelian groups,

(b) the axioms of dense linear order.

(i.e. $\langle G, +, < \rangle$ is an ordered abelian group and $\langle G, < \rangle$ is a densely ordered set.) A Dedekind cut (X, Y) in G is said to be a gap if sup(X) (inf(Y)) does not exist. A gap (X, Y) is said to be *regular* if, for all e in G_+ (={g∈G; g>0}), $X+e \neq X$.

THEOREM. Suppose that G is saturated. Then, G has a regular gap. Moreover, G has 2^{κ} -th regular gaps, where κ is the cardinality of G.

PROOF. Since G is saturated, the coinitiality of G_+ is κ . Let $\langle g_{\alpha} | \alpha < \kappa \rangle$ be an enumeration of G and let $\langle e_{\alpha} | \alpha < \kappa \rangle$ be a strictly decreasing coinitial sequence in G_+ . By the induction on $\alpha < \kappa$, we shall define a set $\{I(x_u, y_u); u \in \alpha \}$ of open intervals in G such that

- (1) $I(x_u, y_u) \neq \emptyset$ for all u in ^a2,
- (2) $y_u x_u < e_\alpha$ for all u in ^a2,
- (3) $g_{\alpha} \notin I(x_u, y_u)$ for all u in ^{α}2,
- (4) $I(x_u, y_u) \cap I(x_v, y_v) = \emptyset$ for all distinct elements u, v in ^a2,
- (5) for all $\beta < \alpha$, for all $v \in \beta^2$ and for all $u \in \alpha^2$, if $v \subset u$, then $I(x_v, y_v) \supset I(x_u, y_u)$.

The construction is as follows:

(Case 1) $\alpha = 0$.

This case is obvious.

(Case 2) $\alpha = \beta + 1$ for some β .

Received June 3, 1980.