CONSTRUCTIONS OF MODULAR FORMS BY MEANS OF TRANSFORMATION FORMULAS FOR THETA SERIES

By

Shigeaki TSUYUMINE

Let F be a positive integral symmetric matrix of degree m, and Z a variable on the Siegel space H_n of degree n. Let Φ be a spherical function of order ν with respect to F which is of the form

 $\Phi(G) = \begin{cases}
1 & (\nu = 0) \\
|^{t}GF^{1/2}\eta|^{\nu} & (\nu > 0)
\end{cases}$ for $m \times n$ complex matrices G

with an $m \times n$ matrix η such that ${}^t\eta\eta = 0$ if $\nu > 1$.

We define a theta series associated with F by setting

$$\theta_{F,U,V}(Z;\Phi) = \sum_{G} \Phi(G+V) \exp(\operatorname{tr}(Z^{\iota}(G+V)F(G+V)+2^{\iota}(G+V)U)),$$

where U, V are $m \times n$ real matrices, tr denotes the trace of a corresponding square matrix and G runs through all $m \times n$ integral matrices. We write simply $\theta_{F,U,V}(Z)$ for the theta series $\theta_{F,U,V}(Z; \Phi)$ when Φ is of order 0.

For congruence subgroups of $SL_2(\mathbb{Z})$ the transformation formulas for theta series of degree 1 associated with F are well known. For example, we can find transformation formulas for theta series of degree 1 in [7], [8], in which multipliers are explicitly determined. Transformation formulas for the theta series $\theta_{F,U,V}(\mathbb{Z}; \Phi)$ of degree $n \ge 1$ are also established in [1] in the case where F is even and U, V are zero (the condition on U, V is not necessary if Φ is of order 0 [9]). Using these results we can get many examples of Siegel modular forms for congruence subgroups.

In this paper we determine a transformation formula for the theta series $\theta_{F,U,V}(Z; \Phi)$ associated with a positive integral symmetric matrix F and any real matrices U, V and using this, we get some examples of cusp forms for some congruence subgroups Γ' of $Sp_n(Z)$. Cusp forms of weight n+1 for Γ' induce differential forms of the first kind on the nonsingular model of the modular function field with respect to Γ' . Our result shows that the geometric genus of the nonsingular model of the modular function field with respect to Γ' is positive.

Received November 30, 1978. Revised August 23, 1979.