CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM FOR STATIONARY *\phi*-MIXING SEQUENCES

By

Ryozo ΥοκούΑΜΑ

1. Introduction and result.

Let $\{X_j, -\infty < j < \infty\}$ be a strictly stationary sequence of random variables centered at expectations with finite variance, which satisfies ϕ -mixing condition

(1.1)
$$\sup |P(A \cap B) - P(A)P(B)| / P(A) \leq \phi(n) \downarrow 0 \quad (n \to \infty).$$

Here the supremum is taken over all $A \in \mathcal{M}^{k}_{-\infty}$ and $B \in \mathcal{M}^{\infty}_{k+n}$, and \mathcal{M}^{b}_{a} denotes the σ -field generated by X_{j} $(a \leq j \leq b)$. Let $S_{n} = X_{1} + \cdots + X_{n}$ and $\sigma_{n}^{2} = ES_{n}^{2}$, $n = 1, 2, \cdots$.

For independent random variables, Brown [1 and 2] has shown that the Lindeberg condition of order $\nu \ge 2$ is necessary and sufficient for the central limit theorem and the convergence of $E|S_n/\sigma_n|^{\nu}$ towards the corresponding moment of the normal distribution. For dependent random variables, such a result seems less well-known. We study here the convergence of moments for stationary ϕ -mixing sequences.

THEOREM. Let $\{X_j\}$ satisfy (1.1). If $EX_1^{2m} < \infty$ for some integer $m \ge 2$, and if (1.2) $\sigma_n^2 = \sigma^2 n (1+o(1))$

as $n \rightarrow \infty(\sigma > 0)$, then

(1.3)
$$E(S_n/\sigma_n)^{2m} \to \beta_{2m} \quad (n \to \infty),$$

where β_{ν} is the ν th absolute moment of N(0, 1).

We remark that under the assumptions of the theorem X_j satisfies the central limit theorem (cf. [4, Theorem 18.5.1]). Also remark that any other conditions beyond (1.1) on the decays of mixing coefficients $\phi(n)$ are not required.

2. Preparatory lemmas.

LEMMA 1 [4, Theorem 17.2.3]. Suppose that (1.1) is satisfied and that ξ and η are measurable with respect to $\mathcal{M}_{-\infty}^k$ and $\mathcal{M}_{k+n}^{\infty}$ $(n\geq 0)$ respectively. If $E|\xi|^p < \infty$ and $E|\eta|^q < \infty$ for p, q>1 with (1/p)+(1/q)=1, then

(2.1)
$$|E(\xi\eta) - E(\xi)E(\eta)| \leq 2\{\phi(n)E|\xi|^p\}^{1/p}\{E|\eta|^q\}^{1/q}.$$

Received October 2, 1978