ON CONJUGATE LOCI AND CUT LOCI OF COMPACT SYMMETRIC SPACES I

By

Masaru TAKEUCHI

Introduction

Let (M, g) be a compact connected Riemannian manifold. Fix a point o of Mand denote by $T_o(M)$ the tangent space of M at o. Let Exp: $T_o(M) \longrightarrow M$ be the exponential map of (M, g) at o. A tangent vector $X \in T_o(M)$ is called a *tan*gential conjugate point of (M, g), if Exp is degenerate at X. The set \tilde{Q} of all tangential conjugate points of (M, g) in $T_o(M)$ is called the *tangenital conjugate* locus of (M, g) in $T_o(M)$. The image $Q = \text{Exp } \tilde{Q}$ of \tilde{Q} under Exp is called the conjugate locus of (M, g) with respect to o.

Let $\gamma: [0, \infty) \longrightarrow M$ be a geodesic of (M, g) (parametrized by arc-length) emanating from o. Let $X_1 = \dot{\tau}(0) \in T_o(M)$ denote the initial tangent vector of γ . Assume that the set of $t \in [0, \infty)$ such that $tX_1 \in \tilde{Q}$ is not empty and let t_0 be the infimum of this set. Then the tangent vector t_0X_1 is called the *tangential first* conjugate point along γ . The set \tilde{F} of all $X \in T_o(M)$ which is the tangenital first conjugate point along some geodesic γ emanating from o, is called the *tangenital* first conjugate locus of (M, g) in $T_o(M)$. The image $F = \text{Exp } \tilde{F}$ of \tilde{F} under Exp is called the first conjugate locus of (M, g) with respect to o.

Let again $\gamma: [0, \infty) \longrightarrow M$ be a geodesic emanating from o and $X_1 = \dot{r}(0)$. Let \tilde{t}_0 be the supremum of the set of $t \in [0, \infty)$ such that $\gamma | [0, t]$ is a minimal geodesic segment from o to $\gamma(t)$. The number \tilde{t}_0 is always finite since M is compact. Then the tangent vector $\tilde{t}_0 X_1$ is called the *tangenital cut point along* γ . The set \tilde{C} af all $X \in T_o(M)$ which is the tangenital cut point along some geodesic γ emanating from o, is called the *tangenital cut locus* of (M, g) in $T_o(M)$. The image $C = \text{Exp } \tilde{C}$ of \tilde{C} under Exp is called the *cut locus* of (M, g) with respect to o.

In the present article, we shall study the structures of the conjugate locus, the first conjugate locus and the cut locus of a compact symmetric space.

Helgason [3] showed by a group theoretical method that the conjugate locus of a compact connected Lie group M, endowed with a bi-invariant Riemannian metric g, is nicely stratified in the sense that it is the disjoint union of smooth submani-

Received December 28, 1977