Remarks on Riesz sets

By Hiroshi YAMAGUCHI (Received March 13, 1978; Revised March 28, 1978)

§ 1. Introduction.

Let \hat{G} be the dual group of a LCA group G. M(G) denotes the usual Banach algebra of all bounded regular Borel measures on G. $L^1(G)$ is the space of all integrable functions on G with respect to a Haal measure on G. For a $\mu \in M(G)$, its Fourier-Stieltjes transform $\hat{\mu}$ is defined as follows.

$$\hat{\mu}(\gamma) = \int_{g} (-x, \gamma) d\mu(x) \quad \text{for } \gamma \in \hat{G}.$$

For a subset E of \hat{G} , $M_E(G)$ denotes the subspace of M(G) consisting of measures whose Fourier-Stieltijes transforms vanish off E. Let $G=T^n$, and let P be a positive octant of $\hat{G}=Z^n$. That is $P=\{(m_1, \dots, m_n)\in Z^n;$ $m_i\geq 0$ $(i=1,\dots,n)\}$. The following theorem (A) is called the Bochner's theorem.

(A) For every $\mu \in M_P(T^n)$, μ is absolutely continuous with respect to a Lebesque measure on T^n . That is, $M_P(T^n) \subset L^1(T^n)$.

If we exchange T^n by R^n , the same result is established. The author proved in ([2]) the following theorem.

- (B) Let G be a LCA group such that \hat{G} is algebraically ordered. Let $M^{a}(G)$ denote the subspace of M(G) consisting of measures of analytic type. Suppose $M^{a}(G) \neq \{0\}$. If $M^{a}(G) \subset L^{1}(G)$, then G admits one of the following structures.
 - (a) G = R, (b) $G = R \oplus D$,
 - (c) G = T, (d) $G = T \oplus D$

for some discrete abelian group D. Moreover, let G be one of the above groups. P is a subsemigroup of \hat{G} such that (i) $P \cup (-P) = \hat{G}$ and $P \cap (-P) = \{0\}$. Set $M_P^a(G) = M^a(G)$. Then, $M_P^a(G) \subset L^1(G)$.

We start to consider whether an analogy of the Bochner's theorem is established if we exchange T by $T \oplus D$.

PROPOSITION 1. Let $H=T\oplus D$, where D is a discrete abelian group such that \hat{D} is torsion-free. Let P_H be a subsemigroup of $\hat{H}=Z\oplus \hat{G}$ such that