On minimal points of Riemann Surfaces, I.

Dedicated to Prof. Yoshie Katsurada on her 60th birthday

By Zenjiro KURAMOCHI

Let R be a Riemann surface with positive boundary and let $\{R_n\}$ (n = $(0, 1, 2, \cdots)$ be its exhaustion with compact analytic relative boundary ∂R_n . Let G be a domain in R such that the relative boundary ∂G consists of at most an enumerable number of smooth curves clustering nowhere in R. In the present paper we consider only domains as mentioned above. lt an open set G has a smooth relative boundary, we call it a regularly open set. Let G_1 be a domain in $R-R_0$ and G_2 be a regularly open set in G_1 such that $G_1 \supset \overline{G}_2$, where \overline{G}_2 is the closure of G_2 in R. Let $U_n(z)$ be a harmonic function in $(G_1 - \overline{G}_2) \cap R_n$ such that $U_n(z) = 1$ on $\partial G_2 \cap R_n = 0$ on $\partial G_1 \cap R_n$ and $\frac{\partial}{\partial n} U_n(z) = 0$ on $\partial R_n \cap (G_1 - \overline{G}_2)$. If the Dirichlet integral $D(U_n(z)) < 0$ $M < \infty$ for any *n*, then $U_n(z)$ converges locally uniformly and in Dirichlet integral as $n \to \infty$ to a harmonic function which is denoted by $\omega(\overline{G}_2, z, G_1)$ and is called the Capacitary Potential^[1] of \overline{G}_2 relative to G_1 (abbreviated by C. P.). Clearly $\omega(\overline{G}_2, z, G_1)$ is uniquely determined and has minimal Dirichlet integral (M. D. I.) over $(G_1 - \overline{G}_2)$ among all harmonic functions with the same value as $\omega(\overline{G}_2, z, G_1)$ on $\partial G_1 + \partial G_2$. Let $G_2 \supset G_3 \supset G_4$, \cdots be a decreasing sequence of regularly open sets. Then $\omega(\overline{G}_n, z, G_1)$ converges locally uniformly and in Dirichlet integral as $n \rightarrow \infty$ to a harmonic function denoted by $\omega(\{\overline{G}_n\}, z, G_1)$. This is called C.P. of $\{\overline{G}_n\}$. Let F be a closed set in G_1 , if there exists a harmonic function U(z) in $G_1 - F$ such that U(z) = 0on ∂G_1 , U(z) = 1 on F and $D(U(z)) < \infty$, there exists a uniquely determined harmonic function $\omega(F, z, G_1)$ such that $\omega(F, z, G) = 1$ on ∂F except at most a set of capacity zero, =0 on ∂G_1 and has M. D. I. Let $\{F_n\}$ be a decreasing sequence in G_1 . Then we can define C.P. of $\{F_n\}$ as above. Let W(z) be the least positive harmonic function in $G_1 - F$ such that W(z) = 1 on ∂F except at most a set of capacity zero. We call W(z) the harmonic measure (abbreviated by H. M.) and denote it by $W(F, z, G_1)$. Similarly H. M. of a decreasing sequence $\{F_n\}$ can be defined also.

Let G be a domain in R such that $\overline{G} \cap \overline{R}_0 = 0$ and let $N_n(z, p)$ be a positive harmonic function in $(G - \{p\}) \cap R_n$: $p \in R_n \cap G$ such that $N_n(z, p) = 0$ on $\partial G \cap R_n$, $N_n(z, p)$ has a logarithmic singularity with coefficient 1 at p and