Notes on the balayaged measure on the Kuramochi boundary^{*)}

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Hiroshi TANAKA**)

1. Let p^{μ} , p^{ν} be two Green potentials on a hyperbolic Riemann surface R. Let G be an open set in R. It is well-known that if $p^{\mu} = p^{\nu} + h$ on G for some harmonic function h on G, then the restriction of μ on G equals the restriction of ν on G.

In this paper, we shall prove a similar result to the above is also valid for Kuramochi's potentails and an open set in the Kuramochi compactification R_N^* of R (Theorem 1). As applications, we shall prove the followings: (a) The support of the canonical measure associated with \tilde{g}_b for a non-minimal Kuramochi boundary point b is contained in the closure of the set of all non-minimal Kuramochi boundary points (Theorem 2). As for a non-minimal Martin boundary point, T. Ikegami [2] had obtained an analogous result to (a). (b) Let K be a compact set in $R_0^* = R_N^* - K_0$ (K_0 is a closed disk in R) and \tilde{C} be the Kuramochi capacity on R_0^* . If we denote by Int(K) the set of all interior points of K in R_0^* , then we have $\tilde{C}(K) = \tilde{C}(K-Int(K))$ (Theorem 3).

2. Let R be a hyperbolic Riemann surface. We shall use the same notation as in [1], for instance, \bar{g}_b , \tilde{p}^{μ} , f^F , R_N^* , Δ_N etc. For a subset A of R, we denote by ∂A the relative boundary of A in R and by \bar{A} the closure of A in R_N^* . The Kuramochi boundary Δ_N is decomposed into two mutually disjoint parts: the minimal part Δ_1 and the non-minimal part Δ_0 . By a measure μ on R_0^* , we always mean a positive measure μ on R_N^* such that $\mu(K_0)=0$. For a measure μ on R_0^* , we denote by $S\mu$ the support of μ and by $\mu|E$ the restriction of μ on a Borel set E in R_N^* . If a measure μ on R_0^* satisfies $\mu(\Delta_0)=0$, then it is called *canonical*. It is known that if μ is a measure on R_0^* , then there exists a unique canonical measure ν such that $\tilde{p}^{\mu} = \tilde{p}^{\nu}$. For a closed set F in R and measure μ on R_0^* , we denote by μ_F the canonical associated measure with $\tilde{p}^{\mu}_{\tilde{F}}$.

^{*)} This was presented at a symposium "Maximum principles in a potential theory" held at the Research Institute for Mathematical Sciences of Kyoto University, 1971.

^{**)} 田中博.