Homotopy classification theorem in algebraic geometry

Dedicated to Professor Yoshie Katurada on her sixtieth birthday

By Toshiyuki Maebashi

Introduction. Let X be a finite $C W$ complex. We denote by $K(X)$ the Grothendieck group of the classes of complex vector bundles over X. We further write Z, B_{v} for the integers with the discrete topology, the classifying space of the infinite unitary group respectively. Then the K theoretic version of the homotopy classification theorem is given by the statement of the existence of a natural bijection:

$$
K(X) \cong\left[X, B_{U} \times Z\right]
$$

where $\left[X, B_{V} \times Z\right.$] denotes the set of homotopy classes of maps of X into $B_{\sigma} \times Z$.

The objective of this paper is to present an algebro-geometric analogue to the above-mentioned theorem. We consider a non-singular reduced affine k-scheme for an algebraically closed field k, instead of a finite $C W$ complex. Let X be a k-scheme of this kind. We write $K(X)$ for the Grothendieck group of the classes of coherent O_{X}-Modules. Let $G_{n, n}$ be the Grassmannian k-scheme of n-planes in affine $2 n$-space $\boldsymbol{A}_{t}{ }^{2 n}$ where n ranges over the positive integers. Then there are natural closed immersions: $G_{n, n} \longrightarrow G_{l, l}$ for $l>n$. We denote by B_{k} the direct limit of $G_{n, n}$ in the category of geometrical k-spaces. Consider morphisms $f, g: X \longrightarrow B_{k} \times Z$. We define $f \sim g$ if and only if f is connected with g by a finite chain of rational homotopies. A class by the equivalence relation \sim will be called a rational homotopy class. We write $\left[X, B_{k} \times Z\right]_{\mathrm{rat}}$ for the set of rational homotopy classes of k-morphisms: $X \longrightarrow B_{k} \times Z$. With these notations we have

Main Theorem. There is a natural bijection

$$
K(X) \cong\left[X, B_{k} \times Z\right]_{\mathrm{rat}} .
$$

Let X be an irreducible algebraic prescheme over an algebraically closed field k. Let γ_{n}^{m} be the universal scheme vector bundle over $G_{n, m}$, i. e. the Grassmannian k-scheme of n-planes in affine $(m-n)$-space. We denote by p the natural projection: $\gamma_{n}^{n} \longrightarrow G_{n, n}$. We now state two theorems below which are used for the proof of the Main Theorem, because of their own interest.

