The maximal large sieve

Dedicated to Professor Yoshie Katsurada on the occasion of her sixtieth anniversary

By Saburô Uchiyama

Let M and N be integers with $N>0$ and let $a_{\mathcal{M}+1}, \cdots, a_{\mathcal{M}+N}$ be any real or complex numbers. Define

$$
S(t)=\sum_{M<n \leq M+N} a_{n} e(n t)
$$

with the abbreviation $e(t)=e^{2 r i t}$ and set

$$
Z=\sum_{M<n \leqq M+N}\left|a_{n}\right|^{2} .
$$

Let $x_{1}, \cdots, x_{R}(R \geqq 1)$ be any fixed real numbers which satisfy the condition

$$
\left\|x_{u}-x_{v}\right\| \geqq \delta \quad \text { when } \quad u \neq v,
$$

where $\|x\|$ denotes the absolute distance between x and the nearest integer to it, and $0<\delta \leqq 1 / 2$.

In a recent paper [1] E. Bombieri and H. Davenport proved that

$$
\sum_{r=1}^{R}\left|S\left(x_{r}\right)\right|^{2} \leqq\left\{\begin{array}{l}
\left(N^{1 / 2}+\delta^{-1 / 2}\right)^{2} Z \tag{1}\\
2 \max \left(N, \delta^{-1}\right) Z
\end{array}\right.
$$

and essentially the best possible results of the type (1) have also been obtained by them in [2]. On the other hand, P. X. Gallagher [3] has given a very simple and ingenious proof of the inequality

$$
\begin{equation*}
\sum_{r=1}^{R}\left|S\left(x_{r}\right)\right|^{2} \leqq\left(\pi N+\delta^{-1}\right) Z \tag{2}
\end{equation*}
$$

which is slightly weaker than, but as powerful as, (1).
Now, our principal objective in this paper is to replace in these inequalities the sum $S(t)$ by the 'maximal function' $S^{*}(t)$ defined by

$$
S^{*}(t)=\sup _{1 \leq n \leqq N}\left|\sum_{M<m<M+n} a_{m} e(m t)\right| .
$$

Indeed, we can show that for $N \geqq 2$

$$
\begin{equation*}
\sum_{r=1}^{R}\left(S^{*}\left(x_{r}\right)\right)^{2} \leqq B\left(N \log N+\delta^{-1} \log ^{2} N\right) Z \tag{3}
\end{equation*}
$$

