The maximal large sieve

Dedicated to Professor Yoshie Katsurada on the occasion of her sixtieth anniversary

By Saburô UCHIYAMA

Let M and N be integers with N>0 and let a_{M+1}, \dots, a_{M+N} be any real or complex numbers. Define

$$S(t) = \sum_{M < n \leq M+N} a_n e(nt)$$

with the abbreviation $e(t) = e^{2\pi i t}$ and set

$$Z = \sum_{M < n \leq M+N} |a_n|^2 \, .$$

Let x_1, \dots, x_R $(R \ge 1)$ be any fixed real numbers which satisfy the condition

$$||x_u-x_v|| \ge \delta$$
 when $u \ne v$,

18. J. A.

general de la companya de la

where ||x|| denotes the absolute distance between x and the nearest integer to it, and $0 < \delta \le 1/2$.

In a recent paper [1] E. Bombieri and H. Davenport proved that

(1)
$$\sum_{r=1}^{R} |S(x_r)|^2 \leq \begin{cases} (N^{1/2} + \delta^{-1/2})^2 Z \\ 2 \max(N, \, \delta^{-1}) Z \end{cases}$$

and essentially the best possible results of the type (1) have also been obtained by them in [2]. On the other hand, P. X. Gallagher [3] has given a very simple and ingenious proof of the inequality

(2)
$$\sum_{r=1}^{R} |S(x_r)|^2 \leq (\pi N + \delta^{-1}) Z^{\frac{1}{2}},$$

which is slightly weaker than, but as powerful as, (1).

Now, our principal objective in this paper is to replace in these inequalities the sum S(t) by the 'maximal function' $S^*(t)$ defined by

$$S^*(t) = \sup_{1 \le n \le N} \left| \sum_{M < m < M+n} a_m e(mt) \right|.$$

Indeed, we can show that for $N \ge 2$

(3)
$$\sum_{r=1}^{R} \left(S^*(x_r) \right)^2 \leq B(N \log N + \delta^{-1} \log^2 N) Z,$$