On certain integral formulas for hypersurfaces in a constant curvature space

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Tamao NAGAI

§0. Introduction.

Let V^m be a closed orientable hypersurface twice differentiably imbedded in an (m+1)-dimensional Euclidean space $E^{m+1}(m+1 \ge 3)$ and k_1, \dots, k_m be the *m* principal curvatures at a point *P* of V^m . The ν -th mean curvature H_{ν} of V^m at *P* is defined by

$$\binom{m}{\nu}H_{\nu}=\sum k_{1}\cdots k_{\nu} \qquad (\nu=1,\,2,\,\cdots,\,m)\,,$$

where the right hand member denotes the ν -th elementary symmetric function of k_1, \dots, k_m . It is convenient to define $H_0 = 1$. C. C. Hsiung [1]¹⁾ proved

(0.1)
$$\int_{\nu^m} (H_{\nu+1}p + H_{\nu}) dA = 0 \qquad (\nu = 0, 1, \dots, m-1),$$

where p denotes the oriented distance from a fixed point O in E^{m+1} to the tangent space of V^m at P and dA is the area element of V^m . Let \overline{V}^m be a closed orientable hypersurface parallel to the given V^m . Then, the integral formulas (0, 1) have been derived by comparison between associated quantities of V^m and \overline{V}^m .

Let R^{m+1} be an (m+1)-dimensional Riemann space of class $C^r(r \ge 3)$, which admits an infinitesimal conformal transformation

(0.2)
$$\bar{x}^i = x^i + \xi^i(x)\delta\tau.$$

We assume that a closed orientable hypersurface V^m does not pass through any singular point of a tangent vector field of the paths with respect to the infinitesimal transformation (0.2). Since the transformation is conformal, there exists a scalar field Φ and the vector ξ^i satisfies the relation

$$(0.3) \qquad \qquad \boldsymbol{\xi}_{i;j} + \boldsymbol{\xi}_{j;i} = 2\boldsymbol{\Phi}\boldsymbol{g}_{ij},$$

where $\xi_i = g_{ij}\xi^j$ and the symbol ";" means covariant differentiation with respect to Riemann connection determined by the metric tensor g_{ij} of R^{m+1}

¹⁾ Numbers in brackets refer to the references at the end of the paper.