On a characteristic property of Sasakian manifolds with constant φ -holomorphic sectional curvature

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Toyoko Kashiwada

Introduction. É. Kosmanek has studied [2] a characteristic property of Kähler manifolds of constant holomorphic sectional curvature. In this paper, we shall show the following theorem making use of an analogous method of in [2].

THEOREM. Let $M^{2n+\prime}$, $n \ge 2$, be a Riemannian manifold with Sasakian structure (ξ, φ, g) . Assume the property (P) to be valid in M^{2n+1} :

(P); For each point p of M^{2n+1} and every geodesic $\Upsilon(t)$ starting from p whose velocity vector at p is orthogonal to ξ_p , there exist functions f(t) and h(t) such that $f\varphi\Upsilon' + h\xi$ is a Jacobi field along Υ and $f(0) \neq 0$.

Then M is a space of constant φ -holomorphic sectional curvature.

Conversely, a Sasakian space of constant φ -holomorphic sectional curvature satisfies the property (P).

Here and throughout the paper, t means an affine parameter.

§1. Lemmas. Let (M^{2n+1}, g) be a Riemannian space. A unit Killing vector field in M is called a Sasakian structure if it satisfies

(1.1)
$$(\nabla_x \varphi) Y = g(\xi, Y) X - g(X, Y) \xi$$
, where $\varphi X = \nabla_x \xi$.

A Sasakian manifold is a Riemannian manifold which admits a Sasakian structure. In such a space, we know

(1.2)
$$R(\xi, X)Y = g(X, Y)\xi - g(\xi, Y)X.$$

We define the subspace D_p of $T_p(M)$ by $D_p = \{X | g(\xi, X) = 0, X \in T_p(M)\}$.

LEMMA 1. Let M be a Sasakian manifold and \tilde{r} be a geodesic. If the velocity vector \tilde{r}' of \tilde{r} at a point p is orthogonal to ξ_p , then \tilde{r}' is orthogonal to ξ on \tilde{r} .

Lemma 1 follows from $\nabla_{r'}(g(\xi, \gamma')) = g(\varphi \gamma', \gamma') = 0.$

LEMMA 2. Assume that a Sasakian space M satisfies (P). Then, for vectors X, $Y \in D_p$ such that $g(\varphi X, Y) = 0$, we have

$$g(R(X, \varphi X)X, Y) = 0.$$