On a K-space with certain conditions

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Hidemaro Kôjyô

§0. Introduction.

Recently, K. Takamatsu and Y. Watanabe $[2]^{1}$ proved that a conformally flat K-space is locally symmetric.

The purpose of the present paper is to investigate the analogous problems in a K-space with $C^{h}_{ijk;h}=0$. In §1, we shall give some relations in a Kspace to use latter. §2 is devoted to give some results in a K-space with $C^{h}_{ijk;h}=0$.

The author likes to express his sincere thanks to Prof. Y. Katsurada and Dr. T. Nagai who gave me many valuable suggestions and constant guidances.

§1. Preliminaries.

Let M^n be an *n*-dimensional (n=2m>2) almost Hermitian manifold with Hermitian structure (F_j^i, g_{ij}) , i.e. with an almost complex structure tensor F_j^i and a positive definite Riemannian metric g_{ij} satisfying

$$F_{j}{}^{i}F_{i}{}^{k} = -\delta_{j}{}^{k}$$

(1.2)
$$g_{ab}F_i^{\ a}F_j^{\ b}=g_{ij},$$

where δ_j^k is the Kronecker's delta.

If an almost Hermitian structure satisfies

(1.3)
$$F_{ij;k} + F_{ik;j} = 0 \qquad (F_{ij} = g_{kj}F_i^{k}) \ [3],$$

where the symbol ";" denotes the operator differentiation with respect to the Riemann connection determined by g_{ij} , then the manifold is called a *K*-space.

From (1.1), (1.2) and (1.3), it follows that

(1.4)
$$F_{ij} = -F_{ji}, \quad F_{ij}^{j} = 0.$$

Let R^{i}_{jkl} , $R_{jk} = R^{i}_{jkl}$ and $R = g^{ij}R_{ij}$ be the Riemannian curvature tensor, the Ricci tensor and the scalar curvature, respectively. Applying the Ricci's

¹⁾ Numbers in brackets refer to the references at the end of the paper.