A NOTE ON PRIMITIVE EXTENSIONS OF RANK 3 OF ALTERNATING GROUPS

By

Shiro IWASAKI

1. T. Tsuzuku determined (the degrees of) the primitive extensions of rank 3 of symmetric groups ([4]). In this note we take up alternating groups instead of symmetric groups and prove the following theorem.

Theorem 1. Let A_n be the alternating group of degree n. If A_n has a primitive extension of rank 3, then n=1, 3, 5 or 7.

Since our proof is quite similar to Tsuzuku's paper [4], we use the same notations as those in [4] and give a proof in outline only.

 S_n : The symmetric group of degree *n*.

 A_n : The alternating group of degree n (on a set Γ).

G: A primitive extension of rank 3 of A_n on a set $\Omega = \{0, 1, 2, \dots, n, \tilde{1}, \tilde{2}, \dots, \tilde{m}\}$ which consists of 1 + n + m letters.

H: The stabilizer G_0 of a letter, say 0, of Ω . The orbits of *H* are denoted by $\Delta_0 = \{0\}, \ \Delta_1 = \{1, 2, \dots, n\}$ and $\Delta_2 = \{\tilde{1}, \tilde{2}, \dots, \tilde{m}\}$ and the group (H, Δ_1) is isomorphic to (A_n, Γ) .

L: The stabilizer of the subset $\{0, \tilde{1}\}$ of Ω .

|X|: The number of elements in a set X.

2. Proof of Theorem 1. Clearly A_2 does not have a primitive extension of rank 3 and so $n \neq 2$. In the following we assume that $n \neq 1, 3, 5$ and 7. By assumption, the group (A_n, Γ) is isomorphic to (H, Δ_1) and |L| is equal to $\frac{n!}{2m}$. According to a theorem of Manning ([4], 2. Prop. 1), |L| is divisible by $\frac{(n-2)!}{2}$ and $\frac{(n-1)!}{2} > |L| \ge \frac{(n-2)!}{2}$.

I. The case $|L| > \frac{(n-2)!}{2}$ and L is transitive on Δ_1 .

If L is a primitive subgroup of (H, Δ_1) , then, in the same way as 3. I in [4], $2n(n-1) > \left[\frac{n+1}{2}\right]!$ and so we have n=10, 9, 8, 6, or 4. In case n=10, 9 or 8, by a theorem of Jordan ([5], th. 13. 9), L is either A_n or S_n and this is a contradiction. For the cases n=6 or 4, and also for the case