A NOTE ON PRIMITIVE EXTENSIONS OF RANK 3 OF ALTERNATING GROUPS

By

Shiro IWASAKI

1. T. Tsuzuku determined (the degrees of) the primitive extensions of rank 3 of symmetric groups ([4]). In this note we take up alternating groups instead of symmetric groups and prove the following theorem.

Theorem 1. Let A_{n} be the alternating group of degree n. If A_{n} has a primitive extension of rank 3 , then $n=1,3,5$ or 7 .

Since our proof is quite simlar to Tsuzuku's paper [4], we use the same notations as those in [4] and give a proof in outline only.
S_{n} : The symmetric group of degree n.
A_{n} : The alternating group of degree n (on a set Γ).
$G:$ A primitive extension of rank 3 of A_{n} on a set $\Omega=\{0,1,2, \cdots$, $n, \widetilde{1}, \tilde{2}, \cdots, \widetilde{m}\}$ which consists of $1+n+m$ letters.
H : The stabilizer G_{0} of a letter, say 0 , of Ω. The orbits of H are denoted by $\Delta_{0}=\{0\}, \Delta_{1}=\{1,2, \cdots, n\}$ and $\Delta_{2}=\{\widetilde{1}, \tilde{2}, \cdots, \widetilde{m}\}$ and the group $\left(H, A_{1}\right)$ is isomorphic to $\left(A_{n}, \Gamma\right)$.
L : The stabilizer of the subset $\{0, \widetilde{1}\}$ of Ω.
$|X|$: The number of elements in a set X.
2. Proof of Theorem 1. Clearly A_{2} does not have a primitive extension of rank 3 and so $n \neq 2$. In the following we assume that $n \neq 1,3,5$ and 7. By assumption, the group $\left(A_{n}, \Gamma\right)$ is isomorphic to $\left(H, \Delta_{1}\right)$ and $|L|$ is equal to $\frac{n!}{2 m}$. According to a theorem of Manning ([4], 2. Prop. 1), $|L|$ is divisible by $\frac{(n-2)!}{2}$ and $\frac{(n-1)!}{2}>|L| \geqq \frac{(n-2)!}{2}$.
I. The case $|L|>\frac{(n-2)!}{2}$ and L is transitive on Δ_{1}.

If L is a primitive subgroup of $\left(H, \Delta_{1}\right)$, then, in the same way as 3 . I in [4], $2 n(n-1)>\left[\frac{n+1}{2}\right]!$ and so we have $n=10,9,8,6$, or 4 . In case $n=10,9$ or 8 , by a theorem of Jordan ([5], th. 13. 9), L is either A_{n} or S_{n} and this is a contradiction. For the cases $n=6$ or 4 , and also for the case

