ÜBER EINEN SATZ VON HERBRAND

Von

Mikao MORIYA

§ 1.

Es sei k ein algebraischer Zahlkörper von endlichem Grade und K_1 , K_2 seien zwei endliche Erweiterungskörper über k. Ferner sei \mathfrak{P} ein Primideal aus K_1K_2 (K_1K_2 ist das Kompositum von K_1 und K_2), und \mathfrak{P}_1 bzw. \mathfrak{P}_2 das durch \mathfrak{P}_3 teilbare Primideal aus K_1 bzw. K_2 . Dann bezeichnen wir mit f_1 bzw. f_2 den Relativgrad von \mathfrak{P}_1 bzw. \mathfrak{P}_2 nach k, und mit $e_1 = e_1^{(0)}p^{m_1}$ bzw. $e_2 = e_2^{(0)}p^{m_2}$ den Exponenten⁽¹⁾ von \mathfrak{P}_1 bzw. \mathfrak{P}_2 nach k, wobei p die durch \mathfrak{P}_3 teilbare Primzahl ist und $(e_1^{(0)}, p) = 1$, $(e_2^{(0)}, p) = 1$ sind. Ferner bezeichnen wir mit f, $e = e^{(0)}p^m$ resp. den Relativgrad, den Exponenten von \mathfrak{P}_3 nach K_2 , wobei $(e^{(0)}, p) = 1$ gesetzt ist.

Es fragt sich nun, wie der Relativgrad f bzw. der Exponent e durch f_1 und f_2 bzw. durch e_1 und e_2 bestimmt wird. Als eine Antwort für diese Frage hat HERBRAND in einer Arbeit⁽²⁾ folgenden Satz angegeben:

(A)
$$\begin{cases} 1.) & e_1 \text{ ist durch } e \text{ teilbar.} \\ 2.) & f = \frac{f_1}{(f_1, f_2)}. \\ \\ 3.) & e^{(0)} = \frac{e_1^{(0)}}{(e_1^{(0)}, e_2^{(0)})}. \end{cases}$$

Aber leider steckt im Beweis dieses eleganten Satzes ein Fehler. Deshalb führt der obige Satz, wie gleich gezeigt wird, zu Widerspruch.

⁽¹⁾ D.h. \mathfrak{p}_1 bzw. \mathfrak{p}_2 ist genau durch \mathfrak{P}_{1}^e bzw. \mathfrak{P}_{2}^e teilbar.

⁽²⁾ HERBRAND, Théorie arithmétique des corps de nombres de degré infini, Math. Ann., Bd. 106 (1932), S. 489, Lemme 2. Ich bezeichne diese Arbeit mit H.I.

Journal of the Faculty of Science, Hokkaido Imp. Univ., Ser. I, Vol. IV, No. 4, 1936.