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Introduction. It is well known that the space in which a measure
of a hypersurface: $x^{i}=x^{i}(u^{1}, u\underline’, \cdots, u^{n- I}),$ $i=1,2,$ $\cdots,$ $n$ is given by the
$(n-1)$-ple integral: $\int_{(n-1)}F(x^{i}, 9x^{i}/u^{a})du^{1}\cdots du^{n-1}$ is called a CARTAN
space. As it is shown by CARTAN, this space is to be regarded as a
manifold of hyperplane-elements $(x^{i}, 0x^{i}/9u^{\alpha})$ . The geometry of CARTAN
space were discussed by E. CARTAN $[1]^{(l)}$ and L. BERWAT,$D[6][7]$ at large.
Thereafter, T. OHKUBO [9] and the present author [10][11] extended this
theory to the $(n-1)$ -ple integral of higher order of special forms. Re-
cently, the present author [12] have established a geometry of an $(n-$

$1)$-ple integral of the second order in general form, but the space in
which the theories are discussed was regarded as a manifold of hyper-
surface-elements of the third order. On the other hand the theory of
$K$-spreads in an $n$-dimensional manifold which are concerned with a
system of partial differential equations of the second order was studied
at first by J. DOUGT,AS, and the theory was treated in the manifold of
all $K$-dimensional surface-elements of order 1. Thereafter A. KAWA-
GUCHI and H. HOMBU [5] studied the theory of $K$-spreads of the $m$-th
order $(m\geqq 2)$ , and the manifold of all $K$-dimensional surface-elements
of the $(m-1)$-th order was based in this case. In this paper we aim
to establish the foundation of differential geometries in the manifold
of $K$-dimensional surface-elements of higher order under the trans-
formation group of the surface-elements which is deduced from the
groups of arbitrary transformations of coordinates and parameters, and
treat of the geometry of multiple integral of higher order in detail.
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\S 1. The manifold $F_{n}^{(m)}$ and notations. In an $Jl$-dimensional space
$X_{n}$ with point coordinates $x^{1},$ $x^{\underline{9}},$

$\cdots,$
$x^{n}$ a $K$-dimensional surface is defined

analytically by the parametric equations
(1) Numbers in brackets refer to the references at the end of the paper.


