ON THE THEORY OF A RHEONOMIC CARTAN SPACE

By

Michiaki KAWAGUCHI, Jr.

Introduction.

A CARTAN space having its origin in the CARTAN'S paper "Les espace de métriques fondés sur la notion d'aire" was developed by many people, especially, L. BERWALD.⁽¹⁾ In the present paper we attempt to build up the geometry in this space from standpoint of the rheonomic theory. In this space, its (n-1)-dimensional area is assumed to be given a priori in such a way that it depends on a variation of time. The geometrical quantities of this space depend on x^a , t, u_a , u_0 . If the time-area is independent of u_0 , then in every moment this space reduces to a CARTAN space in ordinary sense, i.e. then this area is nothing but that of a CARTAN space. Since u_0 may be interpreted as a velocity of a small piece of hypersurface-element, we shall call u_{θ} a velocity of the hypersurface-element. As u_0 is not invariant under a rheonomic transformation, we introduce a invariant parameter v in place of u_0 . This parameter v plays an important rôle in our theory. The form of fundamental function $L(x^{a}, t, u_{a}, u_{0})$ is rewritten in $G(x^{a}, t, u_{0})$ t, u_a , v) which is homogenous of degree one in u_a and lets us decide the base connection, the connection-parameters, the curvature tensors and identities of BIANCHI in our space.

§1. Fundamental function.

In an *n*-dimensional rheonomic manifold X_n with coordinates x^t , t, we consider a rheonomic hypersurface X_{n-1} given by

(1.1)
$$x^{\alpha} = x^{\alpha} (v^{1}, v^{2}, \cdots, v^{n-1}, t) \quad \alpha = 1, \cdots, n$$

and suppose that its measure of (n-1)-dimensional time-area in a

⁽¹⁾ L. BERWALD: Über die *n*-dimensionalen CARTANSchen Räume und eine Normalform der zweiten Variation eines (n-1)-fachen Oberflächenintegrals, Acta Mathematica, 71 (1939), 191-248.