MODULARS ON SEMI-ORDERED LINEAR SPACES I

By

Michiyo MIYAKAWA and Hidegorô NAKANO

In an earlier paper [1], one of the authors defined modulars on linear spaces and discussed their properties: a functional m(x) on a linear space R is said to be a *modular* on R, if

1) m(0) = 0;

2) m(-a) = m(a) for every $a \in R$;

3) for any $a \in R$ we can find a positive number a such that

$$m(\alpha a) < +\infty;$$

4) $m(\xi a) = 0$ for every positive number ξ implies a = 0;

5) $\alpha + \beta = 1$, $\alpha, \beta \ge 0$ implies for every $a, b \in R$

 $m(\alpha a + \beta b) \leq \alpha m(a) + \beta m(b);$

6) $m(a) = \sup_{0 \le \xi < 1} m(\xi a)$ for every $a \in R$.

For universally continuous semi-ordered linear spaces R, modulars were considered with adding conditions: 7) $|a| \leq |b|$ implies $m(a) \leq m(b)$, 8) |a| > |b| = 0 implies m(a+b) = m(a) + m(b), and 9) $0 \leq a_{\lambda} \uparrow_{\lambda \in A} a$ implies $m(a) = \sup m(a_{\lambda})$. (cf. [2])

In this paper we shall discuss modulars on lattice ordered linear spaces only with adding condition 7).

§1. Modulars on linear spaces

Firstly we shall give a rough sketch of the properties of modulars on linear spaces which are obtained in [1] and [3], and will be used in this paper. Let m(x) $(x \in R)$ be a modular on a linear space R. A linear functional $\tilde{x}(x)$ $(x \in R)$ on R is said to be *modular bounded*, if we can find positive numbers α , β such that

$$\alpha \, \tilde{x}(x) \leq \beta + m(x)$$
 for every $x \in R$.

The totality of modular bounded linear functionals on R also builds a linear space which will be called the *modular associated space* of R and denoted by \tilde{R} . For each $\tilde{a} \in \tilde{R}$, putting