ON CERTAIN PROPERTY OF THE NORMS BY MODULARS

By

Tetsuya SHIMOGAKI

Let R be a universally continuous semi-ordered linear space. A functional $m(a)(a \in R)$ is said to be a modular¹⁾ on R if it satisfies the following modular conditions:

(1) $0 \leq m(a) \leq \infty$ for all $a \in R$; (2) if $m(\xi a) = 0$ for all $\xi > 0$, then a = 0;

- (3) for any $a \in R$ there exists a > 0 such that $m(aa) < \infty$;
- (4) for every $a \in R$, $m(\xi a)$ is a convex function of ξ ;
- (5) $|a| \leq |b|$ implies $m(a) \leq m(b)$;
- (6) $a \wedge b = 0$ implies m(a+b) = m(a) + m(b);

(7)
$$0 \leq a_{\lambda \in A} \quad \text{implies} \quad m(a) = \sup_{\lambda \in A} m(a_{\lambda})$$

In R, we define functionals ||a||, $||a||| (a \in R)$ as follows

 $\|a\| = \inf_{\epsilon > 0} rac{1+m(\epsilon a)}{\epsilon} , \quad \|a\| = \inf_{m(\epsilon a) < 1} rac{1}{|\epsilon|} .$

Then it is easily seen that both ||a|| and |||a||| are norms on R and $|||a||| \leq 2|||a||| \leq 2|||a|||$ for all $a \in R$. ||a|| is said to be the first norm by m and |||a||| is said to be the second norm by m. Let \overline{R}^m be the modular conjugate space of R and \overline{m} be the conjugate modular of m^{2} then we can introduce the norms by \overline{m} as above. It is known that if R is semi-regular, the first norm by the conjugate modular \overline{m} is the conjugate norm of the second norm by m and the second norm by the conjugate modular \overline{m} is the conjugate modular \overline{m} is the conjugate norm of the first norm by m. Since ||a|| and |||a||| are semi-continuous by (7), they are reflexive norms (cf. [7]).

If a modular m is of L_p -type, i.e., $m(\xi x) = \xi^p m(x)$ for all $x \in R$, $\xi \ge 0$,

¹⁾ We owe the notations and the terminologies using here to the book : H. NAKANO [3].

²⁾ The conjugate modular \overline{m} is defined as $\overline{m}(\overline{a}) = \sup_{x \in \overline{R}} \{\overline{a}(x) - m(x)\}$ for every $\overline{a} \in \overline{R}^m$, where \overline{R}^m is the space of the modular bounded universally continuous linear functionals on R.