A GENERALIZATION OF MAZUR-ORLICZ THEOREM ON FUNCTION SPACES

By

Takashi ITÔ 👘

1. Introduction. Let $\Omega(B, \mu)$ be a locally finite¹⁾ measure space. By many investigators various function spaces consisting of locally almost finite *B*-measurable functions²⁾ on Ω have been considered as a generalization of the so-called L_p -spaces on Ω $(1 \le p \le +\infty)$. One of them is $L_{\mathcal{M}(u,\omega)}$ space (Musielak-Orlicz [3], [4]).

Let $M(u, \omega)$ be a function on $[0, +\infty] \times \Omega$ with the following properties (it will be called (M)-function);

- 1) $0 \leq M(u, \omega) \leq +\infty$ for all $(u, \omega) \in [0, +\infty] \times \Omega$,
- 2) $\lim M(u, \omega) = 0$ for all $\omega \in \Omega$,
- 3) $M(u, \omega)$ is a non-decreasing and left continuous³⁾ function of u for all $\omega \in \Omega$,
 - 4) $\lim M(u, \omega) > 0$ for all $\omega \in \Omega$,

(M)

5) $M(u, \omega)$ is locally **B**-measurable⁴) as a function of ω for all $u \in [0, +\infty]$.

Using this function $M(u, \omega)$ we can define a functional $\rho_M(x)$ on locally almost finite **B**-measurable functions $x(\omega)$ ($\omega \in \Omega$) by the formula

(1)
$$\rho_{M}(x) = \int_{\omega} M[|x(\omega)|, \omega] d\mu^{5}$$

If $L_{\mathcal{M}(u,\omega)}$ denotes the set of all $x(\omega)$ such that $\rho_{\mathcal{M}}(\alpha x) < +\infty$ for a positive number $\alpha = \alpha(x)$ depending on x, $L_{\mathcal{M}(u,\omega)}$ is a vector space.

As special cases, $L_{\mathcal{M}(u,\omega)}$ coincides with four typical spaces respectively:

1) Ω is covered by the family of measurable sets of finite measure.

3) Since $M(u, \omega)$ can be replaced by $M(u-0, \omega)$, the left side continuity is not essential for the definition of the space $L_{M(u,\omega)}$.

4) It is unnecessary for $M(u, \omega)$ to be almost finite valued.

5) (M)-2) and 3) imply the measurability of a function $M[|x(\omega)|, \omega]$. The integration on Ω means the supremum of integrations on every finite measured set.

²⁾ Correctly speaking, we shall consider only the functions which are almost finite real valued and **B**-measurable in every measurable set of finite measure. And two functions $x(\omega)$ and $y(\omega)$ are identified if $x(\omega)=y(\omega)$ except on a set of measure zero in every measurable set of finite measure.