ON A SIMPLE RING WITH A GALOIS GROUP OF ORDER p^e

By

Takao TAKAZAWA and Hisao TOMINAGA

Recently in $[2, \S3]$,¹⁾ the next was obtained: Let R be a simple ring (with minimum condition) of characteristic $p \neq 0$, and \mathfrak{G} a DF-group of order p^e . If $S=J(\mathfrak{G}, R)$, then [R:S] divides p^e , and $V_R(S)$ coincides with the composite of the center of R and that of S. More recently, in [1], M. Moriya has proved the following: Let R be a division ring, \mathfrak{G} an automorphism group²⁾ of order p^e (p a prime), and $S=J(\mathfrak{G}, R)$. If the center of S contains no primitive p-th roots of 1, then [R:S] divides p^e , and $V_R(S)$ coincides with the composite of the center of R and that of S. And moreover, [R:S] is equal to p^e provided R is not of characteristic p. The purpose of this note is to extend these facts to simple rings in such a way that our extension contains also the fact cited at the beginning.

In what follows, we shall use the following conventions: R is a simple ring with the center C, and \mathfrak{G} a DF-group of order p^e where p is a prime number. We set $S=J(\mathfrak{G}, R)$, which is a simple ring by [2, Lemma 2]. And by Z and V we shall denote the center of S and the centralizer $V_R(S)$ of S in R respectively. Finally, as to notations and terminologies used here, we follow [2].

Now, we shall begin our study with the following theorem.

Theorem 1. If Z contains no primitive p-th roots of 1, then [R:S] divises p^e .

Proof. Firstly, in case e=1, (G) is either outer or inner. If (G) is outer, then it is well-known that there holds [R:S]=p. Thus, we may, and shall, assume that (G) is inner, and set $(G)=\{1, \tilde{v}, \dots, \tilde{v}^{p-1}\}$. Then, to be easily seen, v is contained in $Z(\supseteq C)$, and $v^p=c$ for some $c \in C$. If the polynomial $X^p-c \in C[X]$ is reducible, then it possesses a linear factor, that is, there exists an element $c_0 \in C$ such that $c_0^p=c$, whence it follows that

¹⁾ Numbers in brackets refer to the references cited at the end of this note.

²⁾ One may remark here that in case R is a division ring any automorphism group of finite order becomes naturally a DF-group.