CONTINUOUS FILTERING AND ITS SPECTRAL SEQUENCE

 $\mathbf{B}\mathbf{y}$

Hisashi NUMATA

O. A filtering f of a ring A is a integer valued function on A satisfying the following three conditions:

(0.1)
$$f(x+y) \ge \min\{f(x), f(y)\}, \qquad x, y \in A,$$

$$(0.2) f(xy) \ge f(x) + f(y),$$

$$f(0) = +\infty.$$

Thus, the notion of filtering can be regarded as a generalization of discrete valuation of a field. For purely algebraic interest, it seems to be natural to consider a continuous filtering as the generalization of continuous valuation.

In this note, we consider a real valued function F on A satisfying the above three conditions. We call F a continuous filtering of A, and the ring A is said to be a continuously filtered ring.

Sections 1 and 2 are devoted to describe analogous definitions notations and relations to those of J. Leray [1], and the main parts of this note are sections 3 and 4.

1. A ring A is called a continuouly graded ring if

$$A = \sum_{p \in R} A^{[p]}$$
 (direct sum, R is the set of reals)

where $\{A^{[p]}\}$ are submodules of A and satisfy

$$A^{[p]} \cdot A^{[q]} \subset A^{[p+q]}$$
.

A continuously filtered ring A is called a continuously filtered differential ring if A has a differentiation (d, a) subjected to

$$d^2=0$$
, $adx+dax=0$, $x,y\in A$, $d(xy)=dx\cdot y+ax\cdot dy$, (a is an automorphism of A),

and

$$F(ax) = F(x)$$
.

A differentiation (d, a) is called homogeneous of degree r $(r \in R)$ if