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It is well known that, in any alternative ring A, the Smiley radical
SR(A) is contained in every modular maximal right ideal M. E. Kleinfeld
has shown that every primitive alternative, non-associative ring is a
Cayley-Dickson algebra.

Now we introduce the notion of s-modularity as follows: a right
ideal I of an alternative ring A is called *-modular if there exist two
elements a, u€ A such that |

(1) | x+ax+(a,x, u)el

for all xc¢ A, where (a, x, u) denotes the associator ax-u—a-xu of a,z,u,
and in this case we call a a left s-modulo unit of I. Clearly, modularity
implies *x-modularity. ‘

In this note, we shall show that the above results are also true if we
replacz modular ideals by *-modular ideals.

If a ring A is assumed to be alternative, then (a, b, ¢) becomes a skeW-
symmetric function of its three variables.

The Smiley radical SR(A) of an alternative ring A is defined as the
totality of elements ze A for which each element of (2), is rlght quasi-
regular.

In the next lemma we develop an 1mportant property of x-modular
right ideals. ‘

Lemma 1. Let I* be a x-modular right ideal of an alternative mng
A, and suppose that a left x-modulo unit a of I* is right quasi-regular.
Then I*=A. ’ - |

Proof. Let b be a right quasi-inverse of a:

(2) ‘ | a-+b+ab=0. |

Since a is a left x-modulo wunit of I* and since (a,a,u)=0, we have
a+a*eI* by putting x=a in (1), while (a+a?)b—(a, b, u)=ab-+a*h—(a, a, )
—(a, b, w)=ab+a*b—(a, a-+b, u) = ab+a’b+(a, ab,w)cI* by (2). Hence it
\follows that (a, b, w)el*, On the other hand, if we put x=b in (1), we



