ON *-MODULAR RIGHT IDEALS OF AN ALTERNATIVE RING

By

Hiroyoshi Hashimoto

It is well known that, in any alternative ring A, the Smiley radical $\operatorname{SR}(A)$ is contained in every modular maximal right ideal M. E. Kleinfeld has shown that every primitive alternative, non-associative ring is a Cayley-Dickson algebra.

Now we introduce the notion of $*$-modularity as follows: a right ideal I of an alternative ring A is called $*$-modular if there exist two elements $a, u \in A$ such that

$$
\begin{equation*}
x+a x+(a, x, u) \in I \tag{1}
\end{equation*}
$$

for all $x \in A$, where (a, x, u) denotes the associator $a x \cdot u-a \cdot x u$ of a, x, u, and in this case we call a a left *-modulo unit of I. Clearly, modularity implies *-modularity.

In this note, we shall show that the above results are also true if we replace modular ideals by *-modular ideals.

If a ring A is assumed to be alternative, then (a, b, c) becomes a skewsymmetric function of its three variables.

The Smiley radical $\mathrm{SR}(A)$ of an alternative ring A is defined as the totality of elements $z \in A$ for which each element of $(z)_{r}$ is right quasiregular.

In the next lemma we develop an important property of $*$-modular right ideals.

Lemma 1. Let I^{*} be a *-modular right ideal of an alternative ring A, and suppose that a left *-modulo unit a of I^{*} is right quasi-regular. Then $I^{*}=A$.

Proof. Let b be a right quasi-inverse of a :

$$
\begin{equation*}
a+b+a b=0 \tag{2}
\end{equation*}
$$

Since a is a left $*$-modulo unit of I^{*} and since $(a, a, u) \doteq 0$, we have $a+a^{2} \in I^{*}$ by putting $x=a$ in (1), while $\left(a+a^{2}\right) b-(a, b, u)=a b+a^{2} b-(a, a, u)$ $-(a, b, u)=a b+a^{2} b-(a, a+b, u)=a b+a^{2} b+(a, a b, u) \in I^{*}$ by (2). Hence it follows that $(a, b, u) \in I^{*}$. On the other hand, if we put $x=b$ in (1), we

